• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 30
  • 22
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 243
  • 132
  • 108
  • 82
  • 36
  • 35
  • 27
  • 24
  • 22
  • 22
  • 22
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Acetylcholine in Spinal Pain Modulation : An in vivo Study in the Rat

Abelson, Klas January 2005 (has links)
The spinal cord is an important component in the processing and modulation of painful stimuli. Nerve signals from the periphery are relayed and further conducted to the brain (nociception) in the spinal cord, and the most essential modulation of painful information (antinociception) occurs here. Several neurotransmitters are involved in spinal pain modulation, among them acetylcholine. However, the role of acetylcholine has previously been little investigated. In the present thesis, the acetylcholine release in the spinal cord was studied in vivo. By using spinal microdialysis on anaesthetised rats, the effects on the intraspinal acetylcholine release of various receptor ligands and analgesic agents were examined. This, together with pain behavioural tests and in vitro pharmacological assays, was used to evaluate the role of acetylcholine in spinal pain modulation. The four studies in this thesis resulted in the following conclusions: An increased release of spinal acetylcholine is associated with an elevated pain threshold, while a decreased acetylcholine release is associated with hyperalgesia, as seen after systemic treatment with a muscarinic agonist and an antagonist. Lidocaine is a potent analgesic when given systemically. It was found to produce an increase of intraspinal acetylcholine after intravenous injection of analgesic doses. This effect was attenuated after muscarinic, and abolished after nicotinic, receptor blockade. Various a2-adrenergic ligands, associated with nociceptive or antinociceptive effects, were found to affect intraspinal acetylcholine release via action on nicotinic receptors. Finally, the involvement of spinal acetylcholine in the analgesic effects of aspirin and paracetamol was examined. It was found that spinal acetylcholine could participate in the analgesic effects of aspirin, but not of paracetamol. The present thesis provides data that clearly demonstrate a relationship between intraspinal acetylcholine and antinociception, and elucidate interactions between acetylcholine and other mechanisms that mediate antinociception in the spinal cord.
102

Conotoxin overview and bioinformatic database setup

Chen, Shing-Hwei 28 November 2004 (has links)
Predatory shallow-water tropical marine snails within the genus Conus are estimated to consist of up to 700 species. These carnivorous mollusks have devised efficient venom harpoon-like radular teeth that allow them to predominantly incapacitate polychaete annelids (vermivores), in some cases fish (piscivores), or other mollusks (molluscivores) as an envenomation survival strategy for feeding, defense, and competitor deterrence. The venom of each Conus species contains a distinctive assortment of over 50 diversified disulfide-rich conotoxins with varied pharmacological specificities that selectively inhibit the function of ion channels (Ca2+, Na+, K+) or nicotinic acetylcholine receptors (nAChRs) involved in the animal neurotransmission. Across the genus Conus, the conotoxins represent an extensive array of ion channel blockers each showing an exquisite selectivity to distinguish between channels / receptors and even particular their subtypes. Novel conotoxins detected in the molecular neurobiological approach, providing chemists and pharmacologists a vast library (>50,000 individual toxins) of conotoxins have been further screened for their abilities to modify the responses of tissues to pain stimuli as a first step in describing their potential as lead compounds for novel drugs. In this article, we present the natural history of the Conus biology as well as the nomenclature, classification, structure, neurotoxicological mechanisms, post-translational modification, and pharmaceutical applications of conotoxins. In addition, we also set up the bioinformatic database and search engine about hitherto-identified name and distribution of Conus species and neuropharmacological mechanism, accession number, sequence, and 3D structure of conotoxins and provide researchers advantageous tools for further investigation.
103

A ligand binding analysis of the nicotinic acetylcholine receptors in the locust Locusta migratoria

Prevost, Monique. January 2001 (has links)
Thesis (M. Sc.)--York University, 2001. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 106-118). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pMQ66399.
104

Recurrent inhibitory network among cholinergic inerneurons of the striatum

Sullivan, Matthew Alexander 08 November 2012 (has links)
The striatum is the initial input nuclei of the basal ganglia, and it serves as an integral processing center for action selection and sensorimotor learning. Glutamatergic projections from the cortex and thalamus converge with dense dopaminergic axons from the midbrain to provide the primary inputs to the striatum. Striatal output is then relayed to downstream basal ganglia nuclei by GABAergic medium – sized spiny neurons, which comprise at least 95% of the population of neurons in the striatum. The remaining population of local circuit neurons is dedicated to regulating the activity of spiny projection neurons, and although spiny neurons form a weak lateral inhibitory network among themselves via local axon collaterals, feedforward modulation exerts more powerful control over spiny neuron excitability. Of the striatal interneurons, only one class is not GABAergic. These neurons are cholinergic and correspond to the tonically active neurons (TANs) recorded in vivo, which respond to specific environmental stimuli with a transient depression, or pause, of tonic firing. Striatal cholinergic interneurons account for less than 2 % of the striatal neuronal population, yet their axons form an extensive and complex network that permeates the entire striatum and significantly shapes striatal output by acting at numerous targets via varied receptor types. Indeed, the persistent level of ambient striatal acetylcholine as well as changes to that basal acetylcholine level underlie the major mechanisms of cholinergic signaling in the striatum, however regulation of this system by the local striatal microcircuitry is not well understood. This dissertation finds that activation of intrastriatal cholinergic fibers elicits polysynaptic GABAA inhibitory postsynaptic currents (IPSCs) in cholinergic interneurons recorded in brain slices. Excitation of striatal GABAergic neurons via nicotinic acetylcholine receptors (nAChRs) mediates this polysynaptic inhibition in a manner independent of dopamine. Moreover, activation of a single cholinergic interneuron is capable of eliciting polysynaptic GABAA IPSCs onto itself and nearby cholinergic interneurons. These findings provide an important insight into the striatal microcircuitry controlling cholinergic neuron excitability. / text
105

ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR REGULATION IN EXPERIMENTAL NEURODEGENERATIVE DISEASE

Charriez, Christina Margaret 01 January 2010 (has links)
The α7 nicotinic acetylcholine receptor (nAChR) is involved in learning and memory, synaptic plasticity, neuroprotection, inflammation, and presynaptic regulation of neurotransmitter release. Alzheimer’s disease (AD), a neurodegenerative disease characterized by diminished cognitive abilities, memory loss, and neuropsychiatric disturbances, is associated with a loss of nAChRs. Similarly, traumatic brain injury (TBI) may result in long term neurobehavioral changes exemplified by cognitive dysfunction. Deficits in α7 nAChR expression have previously been shown in experimental TBI and may be related to cognitive impairment experienced in patients following TBI. The purpose of this dissertation was to investigate changes in α7 nAChR expression in models of neurodegeneration and determine if allosteric modulation of the nAChR facilitates functional recovery following experimental TBI through changes in nAChRs. Experimental models employed include a transgenic mouse model of AD that overexpresses the amyloid precursor protein (APPswe mice) and the controlled cortical impact injury model of TBI in rats. Quantitative receptor autoradiography using α-[125I]-bungarotoxin and [125I]-epibatidine and in situ hybridization were used to investigate changes in nAChR density and mRNA expression, respectively. In the first study, the effects of aging and β-amyloid on α7 nAChR expression were evaluated in APPswe mice. Hippocampal α7 nAChR density was significantly upregulated in APPswe mice compared to wild-type mice. It is postulated that elevated Aβ levels bind to the α7 nAChR resulting in upregulation. In a second study, galantamine, a medication used in the treatment of AD, was administered subchronically following experimental TBI to determine if treatment could facilitate cognitive recovery and affect nAChR expression. Interestingly, the results indicate TBI interferes with agonist mediated upregulation of nAChRs, and galantamine did not improve function in a behavioral task of learning a memory. In a third study, the regulation of TBI related deficits in α7 nAChRs was examined 48 hours following injury. α7 nAChR deficits occurred with a reduction in α7 mRNA in several hippocampal regions and non-α7 nAChR deficits occurred with a reduction in α4 mRNA in the metathalamus. The results of these studies suggest AD and TBI may involve complex but parallel processes contributing to the regulation of α7 nAChRs.
106

Interacció dels derivats amfetamínics amb els receptors nicotínics: Aspectes moleculars i funcionals

Garcia Ratés, Sara 02 June 2011 (has links)
En treballs anteriors del nostre grup de recerca es va demostrar que l’antagonista específic del receptor nicotínic α7, metillicaconitina (MLA), inhibia in vitro la producció d’espècies reactives d’oxigen (EROS) i protegia de la neurotoxicitat in vivo induïda per metamfetamina (METH) i per la 3,4-metilendioxi-N-metamfetamina (MDMA). En aquesta tesi, es descriu un nou mecanisme d’acció dels derivats amfetamínics. Mitjançant assajos de fixació de radiolligands, es va comprovar que ambdós derivats amfetamínics competien amb els radiolligands específics dels receptors nicotínics α7 ([3H]Metillicaconitina), i dels heteromèrics ([3H]Epibatidina), el que indicava que en les cèl•lules PC12, el nostre model experimental, i també en una preparació de cervell total de ratolí, aquestes substàncies interaccionaven directament amb els receptors nicotínics. L’MDMA mostrava més afinitat per ambdós subtipus de receptors. Està descrit que el tractament crònic amb nicotina provoca un augment en la densitat de receptors nicotínics tan in vivo com in vitro en cèl•lules PC12. Ambdós derivats amfetamínics van provocar una regulació a l’alça dels dos subtipus de receptors ja a les 6 hores de pretractament. A la vegada, in vivo, l’MDMA i la Nicotina van provocar la regulació a l’alça que va ser potenciada per la seva associació en determinades zones cerebrals on s’expressen cada subtipus de nAChR. De l’estudi dels mecanismes implicats en aquesta regulació a l’alça, mitjançant inhibidors a diferents nivells, es va concluir que, igual com passa amb la nicotina, es produeixen a nivell postraduccional. A nivell funcional, vam determinar que aquests derivats amfetamínics eren capaços d’activar els receptors nicotínics i, d’acord amb les hipòtesis de treballs anteriors, induir una entrada de calci i de sodi que podria estar implicada en els esdeveniments que comportarien la seva neurotoxicitat. Per una banda, l’MDMA i la METH es van comportar com agonistes parcials dels nAChR α7 induïnt un increment de Ca2+ citosòlic. Per altra banda, l’MDMA es va comportar com antagonista dels nAChR heteromèrics i la METH com agonista parcial induint l’entrada de Na+ de la mateixa manera, el qual explicaria diferències a nivell de dependència, ja que els nAChR α4β2 estan implicats en la via mesolímbica o de recompensa. Paral•lelament a l’increment de fixació de radiolligands, es va determinar que la preincubació amb MDMA indueix un increment en la resposta per activació de receptors nicotínics, demostrant que l’ MDMA també indueix regulació a l’alça funcional. Alhora, es va observar que la preincubació de les cèl•lules durant 24 hores amb MDMA dona lloc a un increment perllongat dels nivells basals de Ca2+, el qual indica que l’MDMA inhibeix la desensibilització dels receptors i fa que entri calci durant un temps més llarg. Aquesta entrada persistent podria estar implicada en fenòmens de neurotoxicitat ja que va seguida de l’activació de vies dependents de calci com la calpaïna i la caspasa-3. / During the last years, our emphasis has focused in the study of the neurotoxic effects of MDMA and methamphetamine (METH) on central nervous system and their pharmacological prevention. It has been demonstrated that these amphetamine derivatives produce oxygen species (ROS) in an in vitro model of synaptosomes. In previous works, we demonstrated that blockade of alpha7 nicotinic receptors with methyllycaconitine (MLA) prevented ROS production induced by MDMA and METH, consequently the alpha7 receptor would be involved in the neurotoxicity induced by these drugs. Studies at molecular level, using radioligand binding assays, showed the interaction of METH and MDMA with homomeric alpha7 nAChR and heteromeric subtypes of nicotinic receptors, such as aplha4 beta2. In addition, we investigated the effects of pretreatment with METH and MDMA on nAChR densities. We used PC 12 cells as an experimental model due to the fact other authors have similarly utilised them to evaluate the neurotoxicity of amphetamines. Moreover, they not only express nAChR, including the alpha7 subtype, but also provide an in vitro model for the up-regulation of nAChR, which occurs in vivo following chronic exposure to nicotine. In recent works, we demonstrated in vitro that Ca2+ chelation with EGTA prevented the production of reactive oxygen species (ROS) to a similar extent as nAChR blockade. This indicates that calcium influx, probably through alpha7 nAChR, is a key step in this process. Consequently, one of the objectives of this work was to use a fluorimetric method to investigate the effect of MDMA on Ca2+ and Na+ levels in cultured PC12 cells and the involvement of different nAChR subtypes and other cell pathways related to Ca2+ mobilization. In addition, we used electrophysiology in transfected Xenopus oocytes to corroborate the effects on alpha7 and alpha4 beta2 nAChR. Moreover, pretreatment with MDMA induced functional upregulation by potentiating the effects of specific nAChR agonists or whether it provoked a persistent Ca2+ increase, leading to calpain, caspase 3, NFκB, GSK-3 and Cyt C activation, which was involved in toxicity.
107

Functions of the Cholinergic System in the Morbidities Associated with Alzheimer’s Disease and the Further Evaluation of Tools for the Molecular Imaging of this System

Quinlivan, Mitchell Owen Jeffrey January 2007 (has links)
Doctor of Philosophy(PhD) / The aims of this project were to contribute to the elucidation of the role of the cholinergic system in attention and memory, two cognitive processes severely compromised in Alzheimer’s disease (AD), and to evaluate and develop tools for the functional molecular imaging of this system with a view to improving knowledge of AD and other neurological disorders. Towards the first aim, the specific anti-cholinergic toxin 192 IgG-saporin (SAP) was administered to female Sprague-Dawley rats via either an intracerebroventricular (icv) or an intracortical route and animals were tested with a vibrissal-stimulation reaction-time task and an object recognition task to evaluate their attentional and mnemonic function, respectively. The second aim was approached in two ways. Firstly, relative neuronal densities from animals with icv lesions were assessed with both ex vivo and in vitro autoradiography with the specific cholinergic radiopharmaceuticals [123I]iodobenzovesamicol (123IBVM) and 125I-A-85380, ligands for the vesicular acetylcholine transporter and the nicotinic acetylcholine receptor, respectively. Secondly, a number of in vivo and in vitro studies were performed on a novel and unique molecular imaging system (TOHR), with which it had been hoped initially to image eventually SAP-lesioned animals, with a view to measuring and ameliorating its performance characteristics and assessing its in-principle suitability for small-animal molecular imaging. The behavioural studies support a critical role for the cholinergic system in normal attentional function. Additionally, in accord with literature evidence, no significant impairment was observed in mnemonic function. It is postulated however that the results observed in the intracortically-lesioned animals support the published hypothesis that cholinergic projections to the perirhinal cortex are critical for object-recognition memory. In autoradiographic studies, SAP-lesioned animals demonstrated reduced uptake of 123IBVM in multiple regions. A reduction of nicotinic receptors was also seen in SAP-lesioned animals, a novel finding supportive of the excellent characteristics of radioiodinated I-A-85380. Examination of the performance characteristics of the TOHR support in principle its utility for targeted small-animal molecular imaging studies.
108

Neuronal nicotinic receptor subtypes in normal ageing, Alzheimer's disease and schizophrenia : influences of neuropathological mechanisms as studied in human autopsy brain and transgenic mice /

Marutle, Amelia, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 5 uppsatser.
109

Characterization and expression of subtypes of nicotinic receptors in brain and adrenal medulla : with focus on development, Alzheimer's disease and transgenic animal models /

Mousavi, Malahat, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol inst.,2003. / Härtill 6 uppsatser.
110

Cholinesterase inhibitors in Alzheimer's disease : an experimental study on mechanisms of interaction with muscarinic and nicotinic receptors and neuroprotection /

Svensson, Anne-Lie, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 7 uppsatser.

Page generated in 0.0396 seconds