• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 30
  • 22
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 243
  • 132
  • 108
  • 82
  • 36
  • 35
  • 27
  • 24
  • 22
  • 22
  • 22
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Cytotoxic Alkaloids from Microcos paniculata with Activity at Neuronal Nicotinic Receptors

Still, Patrick C. 09 August 2013 (has links)
No description available.
132

Allosteric Approaches to the Targeting of Neuronal Nicotinic Receptor for Drug Discovery.

Yi , Bitna 28 August 2013 (has links)
No description available.
133

Effects of Formulation Design on Niacin Therapeutics: Mechanism of Action, Metabolism, and Drug Delivery

Cooper, David L., Murrell, Derek E., Roane, David, Harirforoosh, Sam 01 July 2015 (has links)
Niacin is a highly effective, lipid regulating drug associated with a number of metabolically induced side effects such as prostaglandin (PG) mediated flushing and hepatic toxicity. In an attempt to reduce the development of these adverse effects, scientists have investigated differing methods of niacin delivery designed to control drug release and alter metabolism. However, despite successful formulation of various orally based capsule and tablet delivery systems, patient adherence to niacin therapy is still compromised by adverse events such as PG-induced flushing. While the primary advantage of orally dosed formulations is ease of use, alternative delivery options such as transdermal delivery or polymeric micro/nanoparticle encapsulation for oral administration have shown promise in niacin reformulation. However, the effectiveness of these alternative delivery options in reducing inimical effects of niacin and maintaining drug efficacy is still largely unknown and requires more in-depth investigation. In this paper, we present an overview of niacin applications, its metabolic pathways, and current drug delivery formulations. Focus is placed on oral immediate, sustained, and extended release niacin delivery as well as combined statin and/or prostaglandin antagonist niacin formulation. We also examine and discuss current findings involving transdermal niacin formulations and polymeric micro/nanoparticle encapsulated niacin delivery.
134

Expression and Function of Alpha3 and Beta2 Neuronal Nicotinic Acetylcholine Receptor Subunits in HEK-293 Cells

Steinhafel, Nathan W. 08 December 2006 (has links) (PDF)
Single-cell real-time quantitative RT-PCR was used to characterize the mRNA expression of rat neuronal nicotinic acetylcholine receptor (nAChR) subunits α3 and β2 in CA1 hippocampus stratum radiatum and stratum oriens interneurons. α3β2 co-expression was detected in 43% of interneurons analyzed. The nAChR subtype α3β2 was transiently expressed in cells derived from the human embryonic kidney cell line 293 at mRNA levels found in the CA1. The functional properties of α3β2 in HEK-293 cells were characterized by whole-cell patch clamping using acetylcholine (ACh) as an agonist. The kinetics of α3β2 channels were further analyzed by altering the level of α3 DNA transfected into HEK-293 cells. Varying the α3 concentration by more than 100,000 fold did not significantly alter the majority of the kinetics; the 10%-90% rise-time was the main characteristic found to be significantly different. A decrease in α3 concentration illustrated a significant increase in rise time. This and future studies will further our understanding of the extensive role neuronal nAChRs play in modulating hippocampal activity and consequently influencing cognition and memory.
135

Differential Expression and Functional Characterization of Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptors

Mizukawa, John Hideo 17 July 2008 (has links) (PDF)
Neuronal nicotinic acetylcholine receptors (nAChRs) are expressed in both the periperhal and central nervous systems, and are involved in pre-, post-, and non-synaptic control of neuronal activation. In the brain, these receptors play an important role in a variety of physiological processes such as cognition, development, learning, and memory formation. Malfunction of these receptors have been implicated in neurodegenerative diseases like Alzheimer's disease (AD), schizophrenia, and Parkinson's disease. To date, 17 different nAChR subunits, including α2-α7 and β2-β4, have been cloned that can form homo- and/or hetero-pentameric ionotropic receptors. The unique combinations of subunit pentamers manifest in distinct functional receptors. Using single-cell real-time quantitative RT-PCR, we identified the individual expression rates and co-expression rates of the different nAChR subunits in rat CA1 hippocampal interneurons in efforts to characterize functional receptors involved in learning and memory. The two-way combination of subunits with highest expression in hippocampal interneurons was α3β2. Moreover, this combination was expressed in ratios near 1:3 or 3:1 α3 to β2 respectively. To investigate the functionality of α3β2 receptors in different stoichiometries, we injected human α3 and rat β2 subunit mRNA in 1:3, 1:1, and 3:1 ratios into Xenopus laevis oocytes for expression. Two-electrode voltage clamp was then performed with the application of different concentrations of ACh to produce full dose-response curves and channel kinetics data. Distinct α3β2 functional channels were identified from the different expression ratios based on significant differences in channel kinetics (i.e.- peak current rise times, peak current decay times, steady state current in forced desensitization) Dose-response curves produced no significant difference in EC50 values in the different expression groups. However, there was a trend to greater agonist sensitivity with increased α3 expression relative to β2. α3β2 receptors were further characterized through forced desensitization of the receptors and generation of IV plots. The findings from this study elucidate the neuronal nAChR subunit combinations that form functional channels in hippocampal interneurons.
136

The Effects of β-Amyloid on α7 Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

Anderson, Malia L. 06 July 2011 (has links) (PDF)
The exact mechanism and progression of Alzheimer's disease (AD) at present is not fully understood. In patients suffering from AD, damage to the hippocampal region and impairment of learning and memory is present. It is also known that a buildup of β-amyloid plaques occur in AD patients and that β-amyloid interacts with some subtypes of neuronal nicotinic acetylcholine receptors (neuronal nAChRs). These receptors are composed of five subunits. The most prevalent nAChR subunit composition through the brain as a whole is α7. Previous data produced from our lab suggests that α7 nAChRs are also one of the most prevalent subunits expressed by interneurons within the hippocampal region, a part of the brain known to be involved in memory and learning. It is hypothesized that one mechanism through which learning and memory becomes impaired in AD is through the interaction of β-amyloid with these nAChRs. It has previously been established that nanomolar amounts of β-amyloid inhibit the peak currents of α7 nAChRs. However, concentrations of β-amyloid in the picomolar range, in some studies show an activation of α7 nAChRs, while other studies no activation is seen. In this experiment we show that human α7 subunit nAChRs are not activated by β-amyloid42 at 1 pM- 30 nM concentrations. We also show that short, seven-second applications of β-amyloid interact with the α7 nAChRs to alter the kinetics of the channel, however, the exact mechanism and pattern by which it effects the channel is still unclear.
137

Brain-derived Neurotrophic Factor in Autonomic Nervous System: Nicotinic Acetylcholine Receptor Regulation and Potential Trophic Effects

Zhou, Xiangdong 24 October 2005 (has links)
No description available.
138

Abl family kinases regulate neuronal nicotinic receptors and synapses in chick ciliary ganglion neurons

Jayakar, Selwyn S. 14 July 2009 (has links)
No description available.
139

Cholinergic Interneuron Mediated Activation of G-Protein Coupled Receptors in the Dorsal Striatum

Mamaligas, Aphroditi A. 31 August 2018 (has links)
No description available.
140

Addressing the Missing Heritability of Coronary Artery Disease

Hartmann, Katherine Louise Seal, Hartmann January 2016 (has links)
No description available.

Page generated in 0.0487 seconds