• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemistry of Acyl Nitrenes in the Synthesis of Carbamates and Complex Heterocycles

Afeke, Cephas Ofoe 16 September 2015 (has links)
No description available.
2

Perfluroaryl azides : Reactivities, Unique Reactions and their Applications in the Synthesis of Theranostic Agents

Xie, Sheng January 2015 (has links)
The work centersaround perfluoroaryl azides (PFAAs), and theirability to undergo certain fast and robusttransformations. The chemistry was furtherappliedfor biomedical applications. The first section focuses on the azide-aldehyde-amine cycloaddition using PFAAs. Experimental and computational investigations uncovered a fast azide-enamine cycloaddition to form triazolines, which spontaneously rearrange into stable amidine products. In addition, this transformation was explored in the formulation of pure nanodrugs. Because this reaction can introduce a phenyl and a perfluoroaryl moiety enabling supramolecular interactions near the antibiotic drug, the resulting ciprofloxacin derivatives formed nano-sized aggregates by precipitation, which displayed aggregation-induced emission for bacterial imaging as well as enhanced size-dependent antibacterial efficacy. In the second section, the high electrophilicity of PFAAs was explored to transform azides to aryl amides. The reactivity of PFAAs in the thioacid/azide reaction was studied. In addition, PFAAs were discovered to react with phenylacetaldehyde to form aryl amidesviaan azide-enol cycloaddition, similar tothe perfluoroaryl azide-aldehyde-amine reaction.This strategyof amide synthesiswas furthermoregeneralized through a combination of base-catalyzed azide-enolate cycloaddition reaction and acid-or heat-promoted rearrangement of triazolines. The last section describes a type of azide fluorogens whose fluorescence can be switched on by alight-initiated intramolecular nitrene insertion intoa C-H bond in the neighboring aromaticring. These fluorogenic structures were efficiently accessed via the direct nucleophilic aromatic substitution of PFAAs. / <p>QC 20150903</p>
3

Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials

Salvagnini, Claudio 28 November 2005 (has links)
The design of biomaterials, historically initiated and developed by physicians and engineers, in the last decades has slowly shifted toward a more biochemical based approach. For the replacement, repair and regeneration of tissues scientists are now focusing on materials that stimulate specific biological response at the molecular level. These biomaterials have already shown interesting applications in cell proliferation, differentiation, and extracellular matrix production and organization when the material modifications are designed to elicit specific interactions with cell integrins. In the present work we propose the application of this strategy for the development of blood-compatible materials. We first identified, in the coagulation cascade a key enzyme that constitute a valuable biological target for the development of anti-thrombogenic compounds. Piperazinyl-amide derivatives of N-alfa-(3-trifluoromethyl-benzenesulfonyl)-L-arginine were synthesized as graftable thrombin inhibitors. These inhibitors provided a spacer arm for surface grafting and a fluorine tag for XPS (X-ray photoelectron spectroscopy) detection. The possible disturbance of biological activity due to a variable spacer-arm fixed on the N-4 piperazinyl position was evaluated in vitro against human alfa-thrombin, in silico by molecular modelling and via X-ray diffraction study. Selected inhibitors, having inhibition potency in the mM range, were grafted on polyesters surface via wet chemistry and photochemical activation treatments. Wet chemistry surface grafting was performed by specific hydroxyl chain-ends activation and resulted in bioactive molecules fixation of 20-300pmol/cm2. The photochemical grafting was performed using a molecular clip providing an aromatic azide, for nitrene insertion into a polymer, and an activated ester for grafting of tag compounds. This grafting technique resulted in a dramatic increase in fixed bioactive signals (up to nmol/cm2). The material blood-compatibilization induced by the surface fixation of the inhibitors, was measured by a static blood clot weight measurement test. The wet chemistry grafting technique resulted in moderate blood-compatibilization while by the photochemical grafting method important decrease in surface blood clot formation was observed. In the latter case, the blood response to material contact was found to be strongly affected by the polyester surface photo-degradation induced by the activation treatment.
4

Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials

Salvagnini, Claudio 28 November 2005 (has links)
The design of biomaterials, historically initiated and developed by physicians and engineers, in the last decades has slowly shifted toward a more biochemical based approach. For the replacement, repair and regeneration of tissues scientists are now focusing on materials that stimulate specific biological response at the molecular level. These biomaterials have already shown interesting applications in cell proliferation, differentiation, and extracellular matrix production and organization when the material modifications are designed to elicit specific interactions with cell integrins. In the present work we propose the application of this strategy for the development of blood-compatible materials. We first identified, in the coagulation cascade a key enzyme that constitute a valuable biological target for the development of anti-thrombogenic compounds. Piperazinyl-amide derivatives of N-alfa-(3-trifluoromethyl-benzenesulfonyl)-L-arginine were synthesized as graftable thrombin inhibitors. These inhibitors provided a spacer arm for surface grafting and a fluorine tag for XPS (X-ray photoelectron spectroscopy) detection. The possible disturbance of biological activity due to a variable spacer-arm fixed on the N-4 piperazinyl position was evaluated in vitro against human alfa-thrombin, in silico by molecular modelling and via X-ray diffraction study. Selected inhibitors, having inhibition potency in the mM range, were grafted on polyesters surface via wet chemistry and photochemical activation treatments. Wet chemistry surface grafting was performed by specific hydroxyl chain-ends activation and resulted in bioactive molecules fixation of 20-300pmol/cm2. The photochemical grafting was performed using a molecular clip providing an aromatic azide, for nitrene insertion into a polymer, and an activated ester for grafting of tag compounds. This grafting technique resulted in a dramatic increase in fixed bioactive signals (up to nmol/cm2). The material blood-compatibilization induced by the surface fixation of the inhibitors, was measured by a static blood clot weight measurement test. The wet chemistry grafting technique resulted in moderate blood-compatibilization while by the photochemical grafting method important decrease in surface blood clot formation was observed. In the latter case, the blood response to material contact was found to be strongly affected by the polyester surface photo-degradation induced by the activation treatment.

Page generated in 0.1136 seconds