• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 10
  • 10
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 20
  • 18
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The integration of computational and spectroscopic information for hydrogen bonded systems

Price, Jason Mark January 2000 (has links)
The infrared spectra of methanol as dilute solutions in CCU and in the vapour phase have been measured between 2500 and 4000 cm"1 and between 1000 and 1100 cm"1 in order to better understand the nature of the hydrogen bonding equilibria present. The integrated absorption coefficient of the monomeric O-H stretching mode is calculated as (2.157 ± 0.025)xl04 m mol" 1 and the proportion of the components associated with the three principal bands and a fourth weaker band estimated. Seven possible components were considered which were monomer, closed cyclic and open chain dimers, trimers and tetramers. Ab initio calculations were carried out on these components using six basis sets up to the restricted Hartree Fock 6-31 l-H-G(3df,3pd) level. Relevant calculated infrared wavenumber and intensity values, O-H...O bond lengths and hydrogen bonding energies are reported. The cyclic dimer is shown to be a transition state with the open dimer forming a stable minimum energy form. In the case of the trimer and tetramer the hydrogen bonding energy is calculated to be respectively 12 and 32 kJ mol" 1 greater in the cyclic form than in the open form with good agreement at the RHF6-31G(d) and RHF 6-31++G(d,p) levels. The experimental and theoretical results are consistent with an equilibrium involving monomer, open dimer, cyclic trimer and cyclic tetramer. Also, ab initio calculations are reported for HC1 complexes of H^CO, CH3HCO, (CH3)2CO, HCN, CH3CN, C2H5CN, HCOCN and CH3COCN. Comparison with experimentally determined values of hydrogen bond energy, HC1 wavenumber shifts and bond lengths for the four smallest complexes suggest a suitable method and basis set is B3LYP/6-311++G(2d,2p). In the case of CH3HCO there are two possible isomers in which the HC1 is cis and trans to the aldehydic H atom (low and high energy forms respectively). The two bi-functional complexes each have three possible isomers; HC1 may bond to the nitrile group, to the carbonyl group cis to the nitrile or to the carbonyl group trans to the nitrile . Calculated values of hydrogen bond energy; harmonic HC1, CO and CN stretching modes; hydrogen bond lengths and other associated lengths and angles are reported for all seven mono- and all six bi-functional complexes and compared with experimentally determined values, when known. These properties are predicted in other cases including those of the newly described high energy complex of CH3HCO, and those of three newly described complexes of both HCOCN and CH3COCN.
12

Synthesis and Characterization of Nitrile Containing Polysiloxanes and Their Corresponding Networks as Aircraft Sealant Materials

Hoyt, Jennifer K. 14 August 1999 (has links)
Polysiloxane networks have excellent oxidative and good UV environmental stability, flexibility at low temperatures, and thermal stability at higher temperatures. This wide service temperature range makes these materials a candidate class of materials for high performance adhesives and sealants, and in particular for applications on high speed aircraft. Polar polysiloxane networks were prepared with cyanopropyl substituents to lower any propensity for the materials to swell in hydrocarbon fuels and to improve adhesion to metal substrates. 1,3,5,7-tetramethyl,1,3,5,7-tetrahydrocyclotetrasiloxane (D4H) was hydrosilated with allyl cyanide to yield the corresponding 3-cyanopropylmethylcyclotetrasiloxane monomer (D4CN). Controlled molecular weight oligomers with vinyl termination were prepared in equilibrium reactions using a basic catalyst. These oligomers were then crosslinked with various hydride functional crosslinking reagents to yield model networks for mechanical and adhesion studies. The network properties of nonpolar polydimethylsiloxane (PDMS), polar poly[methyl(3,3,3-trifluoropropyl)siloxane] (PMTFPS), and the novel polar poly(3-cyanopropylmethyl-siloxane) (PCPMS) were investigated as a function of sidechain chemical structures. Effects of increasing crosslink density were investigated for the PDMS networks by adding a difunctional siloxane dimer with vinyl groups. Moduli and tensile strengths increased while percent elongation decreased as the crosslink density was increased. All networks were thermally stable above 300 °C in both air and N2 (when heated at a rate of 10 °C/min.) and exhibited Tgs lower than -55 °C. The polar networks swelled to a much lesser extent (at least one order of magnitude) than the nonpolar networks in hydrocarbons and Jet fuel. Cohesive failure was observed for the polar networks via metal to metal (Al foil substrate to Al and Ti adherends) 180° peel test. The PCPMS elastomers had average load values twice those of the PDMS networks independent of crosslink density. / Master of Science
13

Studies Directed to the Optimization of Fermentation of Rhodococcus sp. DAP 96253 and Rhodococcus rhodochrous DAP 96622

Drago, Gene K 26 May 2007 (has links)
Studies Directed to the Optimization of Fermentation of Rhodococcus sp. DAP 96253 and Rhodococcus rhodochrous DAP 96622 by GENE KIRK DRAGO Under the Direction of George E. Pierce ABSTRACT Bench- and pilot plant scale fed-batch fermentations were performed in stirred-tank bioreactors (STBR) with Rhodococcus sp. DAP 96253 and R. rhodochrous DAP 96622 in an attempt to elucidate parameters that may affect the optimization of a fermentation process for high biomass production and high inducible expression of cobalt-high-molecular-mass nitrile hydratase (Co-H-NHase. The effects of these factors on amidase (AMDase) activity were also investigated. Biomass and NHase production were inhibited by a total addition of acetonitrile and acrylonitrile (AC / AN) at 500 ppm during a 48 h run. Biomass and enzyme activity were uncoupled when the inoculum mass was increased from 4 g (wet weight) to ¡Ý 19 g. Other factors that allowed for the uncoupling of biomass production from enzyme activity were the reduction of the AC / AN feed rate from a step-addition at 2500 ¦Ìl / min to a continuous addition at 80 ¨C 120 ¦Ìl / min, and the delay to 18 h post-inoculation the time of initial inducer addition. The inhibition of both biomass production and NHase activity was relieved when both the total concentration of AC / AN was reduced to ¡Ü 350 ppm and the AC / AN feedrate was reduced. The factors with the greatest influence were shown to be the inducer, the inducer concentration, inoculum mass and source as well as the major carbohydrate and nitrogen source. In addition, this lab is the first to report high AN-specific NHase induction by asparagine (1300 ppm) in a fed-batch fermentation system. Prior to this program, 250 mg of cells (wet weight) per liter could be provided in 4 ¨C 10 days with an activity of 1 U NHase per mg of cells (dry weight). Current production is > 50 g / L in 48 h with an NHase activity > 150 U / mg of dry cell weight. INDEX WORDS: Amidase, Asparagine, Biodetoxification, Fermentation, Nitrile, Nitrile Hydratase, Rhodococcus
14

Cycloaddition 1,3-dipolaire intramoléculaire impliquant l'oxyde de nitrile et l'azoture comme dipôles et des 2-vinyloxazolidines dérivés de la noréphédrine

Desjardins, Marc-André January 2008 (has links) (PDF)
L'utilisation de la réaction de cycloaddition 1,3-dipolaire permet la formation d'hétérocycles hautement fonctionnalisés. L'étude de cette réaction de manière intramoléculaire permet la formation de centres chiraux avec une excellente sélectivité. Un alcaloïde naturel, la noréphédrine, est utilisé comme gabarit chiral de départ pour l'insertion des groupements dipôle et dipolarophile nécessaires à la cyloaddition. L'adaptation d'une procédure développée par Roche Products LTD pour la formation d'un amide par l'addition d'un chlorure d'halogéno-alcanoyle sur l'amine de la noréphédrine a permis l'obtention d'amides pures sans le besoin de purification chromatographique. La condensation de ces N-alcanoylhalogénures avec un dérivé acétal de l'acroléine entraîne la formation d'une 2-vinyloxazolidine. L'optimisation des paramètres réactionnels a permis un contrôle parfait de la stéréochimie créé au nouveau centre chiral en C-2 (et la minimisation des produits secondaires formés). L'insertion de la fonction nitro nécessaire pour la cycloaddition intramoléculaire vers les isoxazolines a nécessité deux innovations différentes. Le passage par des intermédiaires iodés est préférable pour l'insertion des fonctions NO₂ et cette substitution a été optimisée afin de maximiser le ratio nitro/nitrite grâce à l'ajout de phloroglucinol. L'activation de dérivés nitro portés par des chaînes alkyles de longueur variables (nombre de carbones: 4 à 6) par la méthode de Mukaiyama a produit les cycloadduits isoxazolines. Toutefois, la longueur de la chaîne a un impact majeur sur la sélectivité de l'anneau 2-isoxazoline issu de la réaction. La cycloaddition à partir du dérivé nitrobutanoyle a formé un produit de régiochimie disubstitué 3,4, ce qui est inverse à la théorie des orbitales moléculaires pour les alcènes mono-substitués qui produisent généralement des isoxazolines substitués en 3,5 et d'une stéréochimie R* pour le centre chiral formé. Par contre, le dérivé nitropentanoyle forme un cycloadduit ayant une stéréochimie opposée S* tout en conservant la régiochimie du dérivé précédent. L'activation du dérivé nitrohexanoyle, a donné une isoxazoline de régiochimie normale disubstitué en 3,5 grâce à sa chaîne latérale plus longue qui permet la fixation de l'oxygène de l'oxyde de nitrile intermédiaire sur le carbone interne de la fonction alcène. La stéréochimie de ce cycloadduit est R*. L'étude de la longueur de la chaîne a donc montré dans un premier temps, une inversion de stéréochimie et ensuite une inversion de régiochimie. L'autre partie du projet consiste en l'utilisation d'une fonction azoture pour la cycloaddition menant aux triazolines. L'insertion de l'ion N₃‾ est aussi améliorée par la formation d'intermédiaires iodés et la cycloaddition nécessite un chauffage dépendant du dérivé. Les espèces triazolines de régiochimie normale 3,4 et de stéréochimie spécifique R* ont été générées. D'ailleurs, la stabilité des triazolines varie beaucoup et certaines d'entre elles doivent être utilisées sans purification. Leur activation subséquente en conditions acides pour entraîner l'attaque d'un nucléophile sur le méthylène de la triazoline conduit à des dérivés amino-fonctionnalisés chiraux sans affecter le centre chiral adjacent. Ces derniers dérivés ont été caractérisés rigoureusement par des méthodes spectroscopiques. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Isoxazolines, Cycloaddition 1,3-dipolaire, Intramoléculaire, Triazolines.
15

Electrochemical performance of LiFePO4 cathode with dinitrile-based electrolytes

Lin, Jing-Heng 31 August 2012 (has links)
In this thesis, high-voltage nitrile-based electrolytes for lithium ion batteries were investigated. The electrolytes were composed of nitrile, dinitrile, and vinylene carbonate (VC) as an additive. Scanning electron microscopy showed the change of surface morphology of electrodes. The chemical compositions of the solid electrolyte interface were characterized by high resolution X-ray photo electron spectroscopy (HR-XPS). We found that the optimal ratio of dinitrile to nitrile is 6 to 4 by volume in terms of electrochemical performances. 5wt% VC as the additive has the enhanced electrochemical performances. The oxidation potential of the nitrile-based electrolytes can reach to 5.7 V. The discharge capacity of the Li||LiFePO4 cell with the nitrile-based electrolyte is about 80 mAhg-1 at a charge/discharge rate of 5 C under 30 oC, and its discharge efficiency after 100 cycles still keeps 94.35%.
16

Metallkomplexe mit Oligonitrilen Synthese und Anwendungen /

Eberhardt, Jan Kurt. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Münster (Westfalen).
17

A cycloaddition route to heterocyclic triones

Dawson, Claire E. January 1998 (has links)
No description available.
18

Hydrogenation of unsaturated polymers in latex form

Lin, Xingwang January 2005 (has links)
Diimide generated from the hydrazine/hydrogen peroxide/catalyst system can be used to hydrogenate unsaturated polymers in latex form. As an economical and environmentally benign alternative to the commercial processes based on hydrogen/transition metal catalysts, this method is of special interest to industry. This thesis provides a detailed description of the diimide hydrogenation process. Reaction kinetics, catalysts and gel formation mechanism have been investigated. <br /> <br /> Four main reactions and a mass transfer process form three parallel processes in this system: diimide is generated at the interface of the latex particles; diimide diffuses into the organic phase to saturate carbon-carbon double bonds; diimide may be consumed at the interface by hydrogen peroxide, and may also be consumed by the disproportionation reaction in the organic phase. The two side reactions contribute to the low hydrogenation efficiency of hydrogen peroxide. Slowing down hydrogen peroxide addition and using stable interfacial catalysts may totally suppress the side reaction in the aqueous phase. The actual catalytic activity of metal ions in the latex depends on the hydrogen peroxide concentration and the addition procedure of reactants. Cupric ion provides better selectivity for hydrogenation than ferric ion and silver ion do. Boric acid as a promoter provides improved selectivity for hydrogenation and faster diimide generation rate. The side reaction in the rubber phase results in low efficiency and gel formation. The rate constants of the four reactions in this system are estimated. <br /> <br />It is shown that the hydrogenation of nitrile rubber latex with an average particle diameter of 72 nm is mainly a reaction-controlled process. Diimide diffusion presents limitation upon hydrogenation at high hydrogenation degree range. Antioxidants can not effectively inhibit gel formation during hydrogenation. Hydrogenation of a core-shell latex with NBR as the shell layer should be able to achieve a higher efficiency, a higher degree of hydrogenation and a lower level of crosslinking.
19

Comparison of Nitrile Hydratases in Rhodococcus Rhodochrous DAP 96253 and DAP 96622 Growing on Inducing and Non-Inducing Media

Du, Fengkun 26 April 2013 (has links)
Nitrile hydratase activity in Rhodococcus rhodochrous DAP 96253 can be induced with multiple inducers that include urea, cobalt (Co), iron (Fe) and nickel (Ni). When induced with Co/urea, cells of R. rhodochrous DAP 96253 expressed the highest level of nitrile hydratase activity (~200 units/min·mg-cdw) when compared with the other inducers tested. Cells induced with Co had the second highest nitrile hydratase activity (~7 units/min·mg-cdw), whereas in the uninduced cells, nitrile hydratase activity was lower than 1 unit/min·mg-cdw. Similarly in R. rhodochrous DAP 96622, when induced with Co/urea, the nitrile hydratase activity of R. rhodochrous DAP 96622 cells was around 50 units/min·mg-cdw which was the highest of all inducers tested. When induced with Co only, the nitrile hydratase activity of R. rhodochrous DAP 96622 was around 20 units/min·mg-cdw, and the nitrile hydratase activity of R. rhodochrous DAP 96622 uninduced was the same as the nitrile hydratase activity of uninduced R. rhodochrous DAP 96253. When Co/urea induced R. rhodochrous DAP 96253 cell lysate was examined on gradient SDS-PAGE and analyzed by Image Quant TL, the nitrile hydratase bands (both α and β subunits) accounted for more than 55% of the total cytosolic proteins. Whereas in Co/urea induced R. rhodochrous DAP 96622, the nitrile hydratase bands accounted for around 25% of the total cytosolic proteins. According to matrix-assisted laser desorption ionization time-of-flight mass spectrometry results, amidase in R. rhodochrous DAP 96253 was approximately 38 kDa from the nitrilase/cyanide hydratase family and amidase in R. rhodochrous DAP 96622 was 55 kDa from the amidase signature family. In addition, the nitrile hydratase regulation system in both R. rhodochrous DAP 96253 and DAP 96622 strains are different. Moreover, the nitrile hydratase regulation system in R. rhodochrous DAP 96253 is different from R. rhodochrous J1. Purified nitrile hydratase from R. rhodochrous DAP 96253 may form a protein complex with glutamine synthetase, resulting in a nitrile hydratase activity of approximately 1500 units/mg-proteins, and nitrile hydratase from R. rhodochrous DAP 96622 is not a protein complex and results in a nitrile hydratase activity of 950 units/mg-proteins.
20

Enhancing the Expression of Enzymes Used to Degrade Hydrocarbons and Cyanohydrins in Rhodococcus sp. DAP 96253 by Using Inducers such as Cobalt, Urea, and Propylene Gas; Also Enhances the Ability of the Bacteria to Delay the Ripening of Several Fruit Species

Perry, Guenevere Diane 14 December 2011 (has links)
ABSTRACT Recent studies have shown that R. rhodochrous DAP 96253 has the ability to delay the ripening of many climacteric fruit, by potentially degrading volatile compounds released by plant cells during the ripening process. Rhodococcus rhodochrous DAP 96253 cells were cultured on YEMEA medium supplemented with inducers, (16mM cobalt and 125mM urea), that over-expressed nitrile hydratase (NHase) and amidase (AMDase) enzymes. Cells were cultured on propylene/ ethylene as sole carbon source to induce alkene monooxygenase (AMO) like activity. Induced R. rhodochrous DAP 96253 cells displayed an 83% increase in final total dry weight compared to cells previously cultured on non-induced medium. Induced R. rhodochrous DAP 96253 cells displayed a 53-85% increase in NHase activity after exposure to propylene/ethylene, and cells displayed a 24-53% increase in NHase activity after exposure to fruit. Non-induced R. rhodochrous DAP 96253 cells displayed a 1-5% increase in NHase activity after propylene/ethylene, and cells displayed an 18-38% increase in NHase activity after exposure to fruit. Propylene/ethylene induced nitrilase activity in non-induced R. rhodochrous DAP 96253cells. Experimental results suggest that R. rhodochrous DAP 96253 may use NHase, amidase, nitrilase, and AMO like activity to delay ripening of climacteric fruit. Rhodococcus rhodochrous 96253 cells cultured on propylene/ethylene and cofactors (16mM cobalt and 125mM urea) displayed improved ability to delay ripening of fruit.

Page generated in 0.0363 seconds