• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of urban air quality using electrochemical based sensor instruments

Popoola, Olalekan Abdul Muiz January 2012 (has links)
Poor air quality has been projected to be the world’s top cause of environmental premature mortality by 2050 surpassing poor sanitation and dirty water (IGBP / IGAC press release, 2012 ). One of the major challenges of air quality management is how to adequately quantify both the spatial and temporal variations of pollutants for the purpose of implementing necessary mitigation measures. The work described in this thesis aims to address this problem using novel electrochemical based air quality (AQ) sensors. These instruments are shown to provide cost effective, portable, reliable, indicative measurements for urban air quality assessment as well as for personal exposure studies. Three principal pollutants CO, NO and NO2 are simultaneously measured in each unit of the AQ instrument including temperature / RH measurements as well as GPS (for time and position) and GPRS for data transmission. Laboratory studies showed that the electrochemical sensor nodes can be highly sensitive, showing linear response during calibration tests at ppb level (0-160 ppb). The instrumental detection limits were found to be < 4 ppb (CO and NO) and < 1 ppb for NO2 with fast response time equivalent to t90 < 20 s. Several field studies were carried out involving deployment of both the mobile and static electrochemical sensor nodes. Results from some short-term studies in four different cities including Cambridge (UK), London (UK), Valencia (Spain) and Lagos (Nigeria) are presented. The measurements in these cities represent snapshot of the pollution levels, the stark contrast between the pollution level especially CO (mean mixing ratio of 16 ppm over 3 hrs) in Lagos and the other three cities is a reflection of the poor air quality in that part of the world. Results from long-term AQ monitoring using network of 46 static AQ sensors were used to characterise pollution in different environments ranging from urban to semi-urban and rural locations. By coupling meteorological information (wind measurements) with pollution data, pollution sources, and phenomena like the street canyon effect can be studied. Results from the long-term study also revealed that siting of the current fixed monitoring stations can fail to represent the actual air quality distribution and may therefore be unrepresentative. This work has shown the capability of electrochemical based AQ sensors in complementing the existing fixed site monitors thus demonstrating an emerging measurement paradigm for air quality monitoring and regulation, source attribution and human exposure studies.
2

Effects of Aqueous Organic Coatings on the Interfacial Transport of Atmospheric Species

Reeser, Dorea Irma 14 January 2014 (has links)
Species must interact with air—aqueous interfaces in order to transport between either phase, however organic coated water surfaces are ubiquitous in the environment, and the physical and chemical processes that occur at organic coated aqueous surfaces are often different than those at pure air—water interfaces. Three studies were performed investigating the transport of species across air—aqueous interfaces with organic coatings in an effort to gain further insight into these processes. Gas and solution phase absorption spectroscopy were used to study the effect of octanol coatings on the formation of molecular iodine (I2) by the heterogeneous ozonation of iodide and its partitioning between phases. Compared to uncoated solutions, the presence of octanol monolayers had a minor effect on the total amount of I2 produced, however, it did significantly enhance the gas to solution partitioning of I2. Incoherent broadband cavity-enhanced absorption spectroscopy (IBBC-EAS) was used to measure the gas-phase nitrogen dioxide (NO2) evolved via photolysis of aqueous nitrate solutions either uncoated or containing octanol, octanoic acid and stearic acid monolayers. Both octanol and stearic acid reduced the rate of gaseous NO2 evolution, and octanol also decreased the steady-state amount of gaseous NO2. Alternatively, octanoic acid enhanced the rate of gaseous NO2 evolution. Finally, the loss of aqueous carbon dioxide (CO2) from aqueous solutions saturated with CO2 was measured using a CO2 electrode in the absence and presence of stearic acid monolayers and octanol coatings, and a greenhouse gas analyzer was used to measure the evolution of gaseous CO2 from solutios with octanol monolayers. Enhanced losses of aqueous and evolved gaseous CO2 were observed with organic coated solutions compared to those uncoated. The results of these studies suggest that organic coatings influence the transport of I2, NO2 and CO2 via one, or a combination of: barrier effects, surface tension effects, chemistry effects and aqueous – surface – gas partitioning effects. These results, particularly the enhanced partitioning of these species to octanol coated aqueous surfaces, have important implications for species transport at air—aqueous interfaces, and may provide useful insight for future studies and parameters for atmospheric models of these species.
3

Effects of Aqueous Organic Coatings on the Interfacial Transport of Atmospheric Species

Reeser, Dorea Irma 14 January 2014 (has links)
Species must interact with air—aqueous interfaces in order to transport between either phase, however organic coated water surfaces are ubiquitous in the environment, and the physical and chemical processes that occur at organic coated aqueous surfaces are often different than those at pure air—water interfaces. Three studies were performed investigating the transport of species across air—aqueous interfaces with organic coatings in an effort to gain further insight into these processes. Gas and solution phase absorption spectroscopy were used to study the effect of octanol coatings on the formation of molecular iodine (I2) by the heterogeneous ozonation of iodide and its partitioning between phases. Compared to uncoated solutions, the presence of octanol monolayers had a minor effect on the total amount of I2 produced, however, it did significantly enhance the gas to solution partitioning of I2. Incoherent broadband cavity-enhanced absorption spectroscopy (IBBC-EAS) was used to measure the gas-phase nitrogen dioxide (NO2) evolved via photolysis of aqueous nitrate solutions either uncoated or containing octanol, octanoic acid and stearic acid monolayers. Both octanol and stearic acid reduced the rate of gaseous NO2 evolution, and octanol also decreased the steady-state amount of gaseous NO2. Alternatively, octanoic acid enhanced the rate of gaseous NO2 evolution. Finally, the loss of aqueous carbon dioxide (CO2) from aqueous solutions saturated with CO2 was measured using a CO2 electrode in the absence and presence of stearic acid monolayers and octanol coatings, and a greenhouse gas analyzer was used to measure the evolution of gaseous CO2 from solutios with octanol monolayers. Enhanced losses of aqueous and evolved gaseous CO2 were observed with organic coated solutions compared to those uncoated. The results of these studies suggest that organic coatings influence the transport of I2, NO2 and CO2 via one, or a combination of: barrier effects, surface tension effects, chemistry effects and aqueous – surface – gas partitioning effects. These results, particularly the enhanced partitioning of these species to octanol coated aqueous surfaces, have important implications for species transport at air—aqueous interfaces, and may provide useful insight for future studies and parameters for atmospheric models of these species.
4

Conception et réalisation d'une nouvelle génération de nano-capteurs de gaz à base de nanofils semi-conducteurs / Design and development of new generation of gas sensors based on semiconductor nanowires

Durand, Brieux 15 November 2016 (has links)
Au cours des dernières années, les efforts de recherche et de développement pour les capteurs de gaz se sont orientés vers l'intégration de nanomatériaux afin d'améliorer les performances des dispositifs. Ces nouvelles générations promettent de nombreux avantages notamment en matière de miniaturisation et de réduction de la consommation énergétique. Par ailleurs, la détection sous gaz (sensibilité, seuil de détection, temps de réponse, ...) s'en retrouve améliorée à cause de l'augmentation du ratio surface/volume de la partie sensible. Ainsi, de tels capteurs peuvent être intégrés dans des systèmes de détections ultrasensibles, autonomes, compactes et transportables. Dans cette thèse, nous proposons d'utiliser des réseaux verticaux de nanofils semi-conducteurs pour créer des dispositifs de détection de gaz hautement sensibles, sélectifs, avec une faible limite de détection (de l'ordre du ppb) et intégrable dans des technologies CMOS, tout en étant générique et adaptable à plusieurs types de matériaux afin de discriminer plusieurs gaz. Une première partie expose la mise au point d'un procédé grande échelle, reproductible, compatible avec l'industrie actuelle des semi-conducteurs (CMOS), pour obtenir un capteur basé sur une architecture 3D à nanofils. Le dispositif est composé de deux contacts symétriques en aluminium à chaque extrémité des nanofils, dont l'un est obtenu par l'approche dite du " pont à air ", permettant la définition d'un contact tridimensionnel au sommet du nanofil. La seconde partie présente les performances sous gaz des dispositifs développés et les mécanismes de fonctionnement. Le capteur démontre des performances record en matière de détection du dioxyde d'azote (30% à 50 ppb) en comparaison à l'état de l'art (25% à 200 ppb). De plus, cette approche permet de mesurer de très faibles concentrations de ce gaz (< 1 ppb) de manière sélective, dans des conditions proches des conditions réelles : humidité (testé jusqu'à 70% d'humidité) et mélange avec d'autres gaz plus concentrés et la réversibilité du capteur est naturelle et se fait à température ambiante sans nécessité des conditions particulières. / In recent years, efforts of research and development for gas sensors converged to use nanomaterials to optimize performance. This new generation promises many advantages especially in miniaturization and reduction of energy consumption. Furthermore, the gas detection parameters (sensitivity, detection limit, response time ...) are improved due to the high surface/volume ratio of the sensitive part. Thus, this sensors can be integrated in ultrasensitive detection systems, autonomous, compact and transportable. In this thesis, we propose to use 3D semiconductor nanowires networks to create highly sensitive and selective gas sensors. The objective of this work is to provide a highly sensitive sensor, featuring a low detection limit (in the ppb range) and embeddable in CMOS devices. In addition process is generic and adaptable to many types of materials to discriminate several gas and converge to electronic nose. The first part of the dissertation is based on development of a large scale, reproducible, compatible with Si processing industry and conventional tools (CMOS), to obtain a sensor based on a 3D nanowire architecture. The device is composed by two symmetrical aluminum contacts at each extremity of the nanowires, including a top contact done by air bridge approach. The second part of this work presents the gas performances of components and working mechanisms associated. A very high response (30%) is obtained at 50 ppb of NO2, compare to the state of the art, 25% reached for 200 ppb. This approach can measure selectively very low concentrations of gas (<1 ppb) in real working conditions: moisture (tested up to 70% moisture) and mixing with other more concentrated gas (interfering gas). In addition, the reversibility of the sensor is natural and occurs at room temperature without requiring specific conditions.
5

Synthèse de formaldéhyde par oxydation directe du méthane en microréacteur / Direct oxidation of methane to formaldehyde in an annular flow microreactor

Zhang, Jie 13 October 2011 (has links)
Le formaldéhyde, un des produits de base de la chimie, est synthétisé industriellement par un procédé multi-étapes, dans lequel l’efficacité énergétique est limitée. Ainsi, une synthèse par oxydation directe du méthane en phase gazeuse, qui pourrait être plus avantageuse, a été étudiée expérimentalement et par une modélisation cinétique, dans le cadre de ce travail. Pour favoriser la production du formaldéhyde, produit intermédiaire de l’oxydation du méthane, des temps de passage faibles (< 100 ms) ont été envisagés. Un microréacteur annulaire (espace annulaire de 0,5 mm) en quartz a été utilisé, dans lequel la réaction a été étudiée en faisant varier les paramètres opératoires suivants : température (600-1000°C), temps de passage (20-80 ms), rapport XO2/XCH4 (0,5-15) et teneur en NO2 ajoutée (0-0,6%). Sans NO2, les sélectivités en HCHO diminuent avec la conversion et le rendement maximal sans recyclage est de 2.4% (950°C, 60 ms et XO2/XCH4 = 8). L’ajout de NO2 permet de diminuer la température requise de 300°C, et d’augmenter le meilleur rendement en HCHO à 9% (700°C, 30 ms et XO2/XCH4 = 7 et 0,5% de NO2). À faible avancement, la réaction sans NO2 peut être modélisée avec le mécanisme Gri-Mech 3.0 sans aucun ajustement. Pour la réaction avec NO2, après quelques corrections et modifications fondées sur une étude bibliographique, le mécanisme de Zalc et al. (2006) permet de rendre correctement compte des résultats expérimentaux. L’analyse de flux a montré que l’inter-conversion entre NO2 et NO joue un rôle important dans le milieu réactionnel. Elle permet de former continuellement les radicaux réactifs OH•, et de convertir les radicaux CH3• et CH3O2• en radicaux CH3O• / Formaldehyde is one of the world’s top organic intermediate chemicals. It is currently produced by a complex three-step process but a one-step process might require less energy. In this work, the direct gas phase partial oxidation of methane to formaldehyde has been studied through experiments and kinetic modeling. As formaldehyde is an intermediate in the sequential oxidation of methane, short residence times (<100 ms) have been considered in order to optimize its production. Thus, a quartz annular flow microreactor (annular space 0.5 mm wide), was chosen. The undertaken experiments consist of a systematic investigation of the effects of temperature (600-1000°C), residence time (20-80 ms), input composition XO2/XCH4 (0.5-15) and initial NO2 concentration (0-0.6%). Without NO2, the HCHO selectivity decreases with the increasing methane conversion. For a single pass operation, the best HCHO yield is 2.4% (950°C, 60 ms, XO2/XCH4 = 8). The addition of NO2 decreases the reaction initiation temperature by 300°C and it remarkably enhances the HCHO yield. The highest HCHO yield attains 9% (700°C, 30 ms, XO2/XCH4 =7) in the presence of NO2 (0.5%). For the reaction without NO2, the mechanism Gri-Mech 3.0 fits well the experimental results. For the reaction with NO2, by using the mechanism of Zalc et al. (2006) with some modifications, we obtained a good agreement between the experimental data and the model. The production and consumption flux analysis shows that the inter-conversion between NO2 and NO plays an important role in the reaction, because it continuously produces the reactive radicals OH• and it converts the radicals CH3• and CH3O2• to radicals CH3O•
6

Oxidation of terpenes in indoor environments : A study of influencing factors

Pommer, Linda January 2003 (has links)
In this thesis the oxidation of monoterpenes by O3 and NO2 and factors that influenced the oxidation were studied. In the environment both ozone (O3) and nitrogen dioxide (NO2) are present as oxidising gases, which causes sampling artefacts when using Tenax TA as an adsorbent to sample organic compounds in the air. A scrubber was developed to remove O3 and NO2 prior to the sampling tube, and artefacts during sampling were minimised when using the scrubber. The main organic compounds sampled in this thesis were two monoterpenes, alfa-pinene and delta-3-carene, due to their presence in both indoor and outdoor air. The recovery of the monoterpenes through the scrubber varied between 75-97% at relative humidities of 15-75%. The reactions of alfa-pinene and delta-3-carene with O 3, NO2 and nitric oxide (NO) at different relative humidities (RHs) and reaction times were studied in a dark reaction chamber. The experiments were planned and performed according to an experimental design were the factors influencing the reaction (O3, NO2, NO, RH and reaction times) were varied between high and low levels. In the experiments up to 13% of the monoterpenes reacted when O3, NO2, and reaction time were at high levels, and NO, and RH were at low levels. In the evaluation eight and seven factors (including both single and interaction factors) were found to influence the amount of alfa-pinene and delta-3-carene reacted, respectively. The three most influencing factors for both of the monoterpenes were the O 3 level, the reaction time, and the RH. Increased O3 level and reaction time increased the amount of monoterpene reacted, and increased RH decreased the amount reacted. A theoretical model of the reactions occurring in the reaction chamber was created. The amount of monoterpene reacted at different initial settings of O3, NO2, and NO were calculated, as well as the influence of different reaction pathways, and the concentrations of O3 and NO2, and NO at specific reaction times. The results of the theoretical model were that the reactivity of the gas mixture towards alfa-pinene and delta-3-carene was underestimated. But, the calculated concentrations of O3, NO2, and NO in the theoretical model were found to correspond to a high degree with experimental results performed under similar conditions. The possible associations between organic compounds in indoor air, building variables and the presence of sick building syndrome were studied using principal component analysis. The most complex model was able to separate 71% of the “sick” buildings from the “healthy” buildings. The most important variables that separated the “sick” buildings from the “healthy” buildings were a more frequent occurrence or a higher concentration of compounds with shorter retention times in the “sick” buildings. The outcome of this thesis could be summarised as follows; - - - -
7

Oxidation of terpenes in indoor environments : A study of influencing factors

Pommer, Linda January 2003 (has links)
<p>In this thesis the oxidation of monoterpenes by O3 and NO2 and factors that influenced the oxidation were studied. In the environment both ozone (O3) and nitrogen dioxide (NO2) are present as oxidising gases, which causes sampling artefacts when using Tenax TA as an adsorbent to sample organic compounds in the air. A scrubber was developed to remove O3 and NO2 prior to the sampling tube, and artefacts during sampling were minimised when using the scrubber. The main organic compounds sampled in this thesis were two monoterpenes, alfa-pinene and delta-3-carene, due to their presence in both indoor and outdoor air. The recovery of the monoterpenes through the scrubber varied between 75-97% at relative humidities of 15-75%.</p><p>The reactions of alfa-pinene and delta-3-carene with O 3, NO2 and nitric oxide (NO) at different relative humidities (RHs) and reaction times were studied in a dark reaction chamber. The experiments were planned and performed according to an experimental design were the factors influencing the reaction (O3, NO2, NO, RH and reaction times) were varied between high and low levels. In the experiments up to 13% of the monoterpenes reacted when O3, NO2, and reaction time were at high levels, and NO, and RH were at low levels. In the evaluation eight and seven factors (including both single and interaction factors) were found to influence the amount of alfa-pinene and delta-3-carene reacted, respectively. The three most influencing factors for both of the monoterpenes were the O 3 level, the reaction time, and the RH. Increased O3 level and reaction time increased the amount of monoterpene reacted, and increased RH decreased the amount reacted.</p><p>A theoretical model of the reactions occurring in the reaction chamber was created. The amount of monoterpene reacted at different initial settings of O3, NO2, and NO were calculated, as well as the influence of different reaction pathways, and the concentrations of O3 and NO2, and NO at specific reaction times. The results of the theoretical model were that the reactivity of the gas mixture towards alfa-pinene and delta-3-carene was underestimated. But, the calculated concentrations of O3, NO2, and NO in the theoretical model were found to correspond to a high degree with experimental results performed under similar conditions. The possible associations between organic compounds in indoor air, building variables and the presence of sick building syndrome were studied using principal component analysis. The most complex model was able to separate 71% of the “sick” buildings from the “healthy” buildings. The most important variables that separated the “sick” buildings from the “healthy” buildings were a more frequent occurrence or a higher concentration of compounds with shorter retention times in the “sick” buildings.</p><p>The outcome of this thesis could be summarised as follows;</p><p>-</p><p>-</p><p>-</p><p>-</p>
8

ZnO nanoparticles : synthesis of Ga-doped ZnO, oxygen gas sensing and quantum chemical investigation

Hagelin, Alexander January 2011 (has links)
Doped ZnO nanoparticles were synthesized by three different methods – electrochemical deposition under oxidizing conditions (EDOC) , combustion method and wet chemical synthesis – for investigating the oxygen gas sensing response. Ga-doped ZnO was mostly synthesized but also In-doped ZnO was made. The samples were analyzed by XRD, SEM, EDX and TEM. Gas response curves are given alongside with Langmuir fitted curves and data for pure ZnO and Ga-doped ZnO. DFT quantum chemical investigation of cluster models ZnO nanoparticles were performed to evaluate defect effects and oxygen and nitrogen dioxide reactions with the ZnO surface. Defects were investigated by DOS and HOMO-LUMO plots , and are oxygen vacancy, zinc vacancy, zinc interstitial and gallium doping by replacing zinc with gallium. Oxygen and nitrogen dioxide reactions were investigated by computing Mulliken charges, bond lengths, DOS spectra and HOMO-LUMO plots.

Page generated in 0.0513 seconds