• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 34
  • 14
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 55
  • 53
  • 44
  • 43
  • 37
  • 35
  • 33
  • 33
  • 32
  • 32
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Assessment of a partial nitritation/Anammox system for nitrogen removal

Gut, Luiza January 2006 (has links)
This thesis evaluates the performance of a deammonification system designed as a two-step tech-nology consisting of an initial partial nitritation followed by an Anammox process. Operation of a technical-scale pilot plant at the Himmerfjärden Wastewater Treatment Plant (Grödinge, Swe-den) has been assessed. Oxygen Uptake Rate (OUR) to evaluate the respiration activity of nitrifi-ers in the system and batch tests to assess reaction rates have also been applied in the study. It was found that the total inorganic nitrogen elimination strongly depended on the nitrite-to-ammonium ratio in the influent to the Anammox reactor, which was correlated with the per-formance of the partial nitritation phase. Therefore, a control strategy for oxidation of ammo-nium to nitrite has been proposed. Controlled oxygen supply to the partial nitritation reactor is obligatory to obtain a proper pH drop indicating oxidation of ammonia to nitrite at the adequate ratio. A very high nitrogen removal efficiency (an average of 84%) and stable operation of the system have been reached. Conductivity measurements were also used to monitor the system influent nitrogen load and the nitrogen removal in the Anammox reactor. The data gathered from the operation of the pilot plant enabled the use of multivariate data analysis to model the process behaviour and the assessment of the covariances between the process parameters. The options for full-scale implementation of the Anammox systems have been proposed as a result of the study. / QC 20101115
62

Removal Of Refractory Tkn From An Effluent Wastewater Using Sodium Ferrate

Lettie, Lucia 01 January 2006 (has links)
This research addresses refractory forms of nitrogen that, even with advanced biological nitrification-denitrification systems are not removed completely from domestic wastewater. TKN (Total Kjeldahl Nitrogen), ammonia plus organic nitrogen, is one of the forms to measure the levels of nitrogen present in effluent wastewaters. Ferrate, a strong oxidant, was used for the treatment of these nitrogen forms with the objective of producing nitrogen compounds that can be removed by subsequent biological processes. Bench-scale experiments were performed on effluent samples taken prior to chlorination from an Orlando, FL wastewater treatment facility, using a biological nutrient removal process. The samples were treated with doses of ferrate ranging from 1 to 50 mg/L as FeO4–2 under unbuffered conditions. TKN removal as high as 70% and COD removal greater than 55% was observed. The TSS production after ferrate treatment was in a range of 12 to 200 mg/L for doses between 10 and 50 mg/L FeO4-2. After an optimum dose of ferrate was determined, three bench-scale reactors were operated under anoxic conditions for 10 to 12 days, two as duplicates containing the treated effluent and one as a control with untreated sample. Two different doses of ferrate were used as optimum dose for these experiments, 10 and 25 mg/L as FeO4-2. The purpose of these reactors was to determine the potential for biological removal of remaining nitrogen after ferrate oxidation of refractory nitrogen. Treated and raw samples were analyzed for Total Kjeldahl Nitrogen (TKN) (filtered and unfiltered), chemical oxygen demand (COD) (filtered and unfiltered), total suspended solids (TSS), nitrate (NO3-N), nitrite (NO2-N), and heterotrophic plate count (HPC). As a result, more than 70% of the soluble TKN was removed by chemical and biological oxidation for a sample treated with a dose of 25 mg/L FeO4-2, and less than 50% when treated with 10 mg/L FeO4-2. For the control samples run parallel to the ferrate treated samples, a maximum of 48% of soluble TKN and a minimum of 12% was removed. A three-log increase was observed in heterotrophic bacteria numbers for both doses during the operation of the reactors. Sodium ferrate was found to be an effective oxidant that can enhance the biodegradability of recalcitrant TKN present in municipal wastewaters. As mentioned before this research was develop using batch reactor units at bench-scale, therefore it is recommended to follow the investigation of the biodegradability of recalcitrant TKN of a ferrate treated sample under continuous flow conditions so that results can be extrapolated to a full-scale treatment facility.
63

Increasing Algal Productivity and Treatment Potential in Raceways Fed Clarified Municipal Wastewater

Pittner, Christopher D. 01 December 2018 (has links) (PDF)
Two sets of triplicate pilot algal raceway ponds (1000-L, 0.30-m deep, paddle wheel mixed) were operated for 14 months at a California wastewater treatment plant to treat wastewater and generate algal-bacterial biomass as biofuel feedstock. Two experiments were run to determine the effect on biomass productivity of (1) hydraulic residence time (HRT: 2, 3, 4, or 4.5 days) and (2) feeding schedule (18 small pulses during 8 AM-4 PM [diurnal] versus 20 large pulses during 4 AM-12 AM [diel]). The target productivity was at least 20 g volatile suspended solids per m2 of pond per day. Additional output variables were followed during the experiments: treatment performance and the effectiveness of biomass harvesting though bioflocculation. Productivity was consistently higher in ponds with a 2-d HRT versus longer HRTs. Average productivity for the 2-d HRT ponds and the variable-HRT ponds (3.6-d average HRT) were 30.1 and 23.4 g/m2-d, respectively. Productivity data collected during the feed regime experiment were highly variable, and average productivities were the same at 26 g/m2-d. During both experiments, both pond sets exceeded the target of 20 g/m2-d on an annual basis. During the hydraulic residence time experiment, the average pond productivity throughout the HRT experiment for the 2-d HRT and 3-d HRT ponds were 30.1 and 23.4 g/m2-d, respectively. Settling efficiency was high for both 2- and 3-d HRT ponds with average turbidity removal of 87-89%. However, total ammonia nitrogen (TAN) concentrations in the 2-day HRT pond effluent were 50-94% higher than in the 3-d HRT pond effluents, although effluent TAN concentrations in both ponds were approximately the same during mid-summer. Furthermore, effluent biochemical oxygen demand (BOD5) concentrations were similar, with the supernatant of Imhoff cones settled for 24 hours containing 24-27 mg/L BOD5 (81-92% removal). In general, the 3-d HRT ponds provided better treatment than the 2-d HRT ponds. During the feeding regime experiment, no productivity or BOD5 removal differences were evident. However, the 3-d HRT ponds had consistently 8 mg/L more effluent TAN than the 2-d HRT ponds.
64

Evaluation of the IFAS system with Deammonification Process for Nitrogen Removal from Municipal Wastewater

Los, Karolina January 2018 (has links)
No description available.
65

The application of A/O-MBR system for domestic wastewater treatment in Hanoi: Research Article

Tran, Thi Viet Nga, Tran, Hoai Son 06 August 2012 (has links)
The study aims to investigate an appropriate wastewater treatment process to treat domestic wastewater in Hanoi City which contain low-strength for COD (120-200 mg/L) but high in nitrogen content (10-40 mg/L). A lab scale anoxic-oxic system with a hollow fiber-Membrane Separation Bioreactor was operated at a flow rate of 5-10 L/h over a period of 150 days. The reactor was operated at different sludge recirculation rates. The MBR maintained relatively constant transmembrane pressure. During 150 days of reactor operation, treated water quality have COD of around 20 mg/L, NH4-N of less than 1 mg/L, NO3-N of less than 5 mg/L. The system shows good and stable efficiency for organic matter and nitrogen removal without adding an external carbon source and coagulants. The results based on the study indicated that the proposed process configuration has potential to treat the low-strength wastewater in Hanoi. / Mục tiêu của nghiên cứu là đề xuất được một công nghệ hiệu quả và phù hợp để xử lý nước thải sinh họat ở các đô thị của Việt nam, là loại nước thải được thu gom từ hệ thống thoát nước chung có nồng độ chất hữu cơ thấp (COD 120-200 mg/l) nhưng hàm lượng chất dinh dưỡng như Nitơ, Phốt pho khá cao (T-N: 10-40 mg/L). Chúng tôi đã nghiên cứu và vận hành chạy thử mô hình xử lý sinh học yếm khí - kỵ khí (AO) kết hợp với màng vi lọc ở quy mô mô hình phòng thí nghiệm (công suất 5-10 L/h) ở các chế độ công suất bùn tuần hoàn khác nhau. Kết quả xử lý trong thời gian 5 tháng vận hành mô hình cho thấy chất lượng nước thải sau xử lý có hàm lượng COD nhỏ hơn 20 mg/L, NH4-N nhỏ hơn 1 mg/L, NO3-N nhỏ hơn 5 mg/L. Hiệu suất xử lý chất hữu cơ và chất dinh dưỡng rất ổn định và hệ thống không phải sử dụng các nguồn bổ sung chất hữu cơ hay các hóa chất trợ lắng như các công nghệ đang áp dụng. Kết quả cho thấy công nghệ AO kết hợp màng vi lọc có khả năng áp dụng thực tế, phù hợp với những nơi có quỹ đất nhỏ, chất lượng nước sau xử lý rất cao có thể phục vụ cho mục đích tái sử dụng.
66

Feasibility of sustainable nitrogen removal: integration of partial nitritation-anammox with membrane aerated biofilm reactor (MABR)

Shiu, Natalia January 2023 (has links)
The presence of nutrients, such as nitrogenous compounds, in wastewater can pose serious environmental concerns to water systems leading to reduced water quality and potential risks to the public health. Nutrient removal in conventional wastewater treatment systems is becoming increasingly more costly due to the extensive energy requirements and high aeration costs. Anaerobic ammonium oxidation (Anammox) is an alternative method for nutrient removal which can reduce overall treatment costs due to less aeration requirements and less sludge production. Anammox process can be implemented with other innovative technologies, such as membrane aerated biofilm reactors (MABR) to achieve effective and sustainable nutrient removal. A major challenge associated with Anammox process is effective control of nitrite oxidizing bacteria (NOB). High temperature in wastewater treatment systems can promote Anammox bacterial growth and inhibit NOB activity. This research aims to investigate the feasibility of integrating Anammox processes with MABR technologies and to examine the effects of high temperature aeration supplied to MABR systems on Anammox bacterial growth and NOB suppression. The nitrogen removal by Anammox bacteria in a lab-scaled MABR is examined to determine the impact of aeration temperature on inhibition of NOB. / Thesis / Master of Applied Science (MASc)
67

Nutrient Management in On-Site Wastewater Treatment

Dey, Ayanangshu 11 December 2009 (has links)
Groundwater and surface water contamination has been linked in the past to inadequate or failing on-site wastewater treatment and disposal systems. The on-site wastewater systems installed in coastal areas have more potential for inflicting this kind of environmental damage. This work studied the regulatory compliance and environmental protection of the four types of on-site wastewater disposal systems found on the Mississippi Gulf Coast; i.e., vegetative rock filter, subsurface drip irrigation, sand mound, and sprinkler systems, by statistical techniques. Compliance was also evaluated for groundwater samples collected from monitoring wells installed at four corners of a disposal field. This work eventually culminated in formulation of strategy for modifying the aerobic treatment prior to disposal to help reduce nitrogen loading on the discharging environment. Process modeling and simulations were performed to optimize conditions for biological nitrogen reduction in the treatment unit by efficient management of aeration. Two separate proposals were developed, such as either running the aerator unit in a low operating dissolved oxygen concentration or intermittent aeration mode.
68

Biological Nitrogen Removal in a Gravity Flow Biomass Concentrator Reactor

Scott, Daniel 20 April 2011 (has links)
No description available.
69

Nitrogen Removal and Lipid Production from Secondary Wastewater Using Green Alga Chlorella vulgaris

Liu, Zhouyang 19 April 2012 (has links)
No description available.
70

Intensification of Biological Nutrient Removal Processes

Klaus, Stephanie Anne 29 October 2019 (has links)
Intensification refers to utilizing wastewater treatment processes that decrease chemical and energy demands, increase energy recovery, and reduce the process footprint (or increased capacity in an existing footprint) all while providing the same level of nutrient removal as traditional methods. Shortcut nitrogen removal processes; including nitrite shunt, partial nitritation/anammox, and partial denitrification/anammox, as well as low-carbon biological phosphorus removal, were critically-evaluated in this study with an overall objective of intensification of existing infrastructure. At the beginning of this study, granular sidestream deammonification was becoming well-established in Europe, but there was virtually no experience with startup or operation of these processes in North America. The experience gained from optimization of the sidestream deammonification moving bed biofilm reactor (MBBR) in this study, including the novel pH-based aeration control strategy, has influenced the startup procedure and operation of subsequent full-scale installations in the United States and around the world. Long startup time remains a barrier to the implementation of sidestream deammonification processes, but this study was the first to show the benefits of utilizing media with an existing nitrifying biofilm to speed up anammox bacteria colonization. Utilizing media with an established biofilm from a mature integrated fixed film activated sludge (IFAS) process resulted in at least five times greater anammox activity rates in one month than virgin media without a preliminary biofilm. This concept has not been testing yet in a full-scale startup, but has the potential to drastically reduce startup time. False dissolved oxygen readings were observed in batch scale denitrification tests, and it was determined that nitric oxide was interfering with optical DO sensors, a problem of which the sensor manufacturers were not aware. This led to at least one sensor manufacturer reevaluating their sensor design and several laboratories and full-scale process installations were able to understand their observed false DO readings. There is an industry-wide trend to utilize influent carbon more efficiently and realize the benefits of mainstream shortcut nitrogen removal. The A/B pilot at the HRSD Chesapeake Elizabeth Treatment provides a unique chance to study these strategies in a continuous flow system with real wastewater. For the first time, it was demonstrated that the presence of influent particulate COD can lead to higher competition for nitrite by heterotrophic denitrifying bacteria, resulting in nitrite oxidizing bacteria (NOB) out-selection. TIN removal was affected by both the type and amount of influent COD, with particulate COD (pCOD) having a stronger influence than soluble COD (sCOD). Based on these findings, an innovative approach to achieving energy efficient biological nitrogen removal was suggested, in which influent carbon fractions are tailored to control specific ammonia and nitrite oxidation rates and thereby achieve energy efficiency in the nitrogen removal goals downstream. Intermittent and continuous aeration strategies were explored for more conventional BNR processes. The effect of influent carbon fractionation on TIN removal was again considered, this time in the context of simultaneous nitrification/denitrification during continuous aeration. It was concluded that intermittent aeration was able to achieve equal or higher TIN removal than continuous aeration at shorter SRTs, whether or not the goal is nitrite shunt. It is sometimes assumed that converting to continuous aeration ammonia-based aeration control (ABAC) or ammonia vs. NOx (AvN) control will result in an additional nitrogen removal simply by reducing the DO setpoint resulting in simultaneous nitrification/denitrification (SND). This work demonstrated that lower DO did not always improve TIN removal and most importantly that aeration control alone cannot guarantee SND. It was concluded that although lower DO is necessary to achieve SND, there also needs to be sufficient carbon available for denitrification. While the implementation of full-scale sidestream anammox happened rather quickly, the implementation of anammox in the mainstream has not followed, without any known full-scale implementations. This is almost certainly because maintaining reliable mainstream NOB out-selection seems to be an insurmountable obstacle to full-scale implementation. Partial denitrification/anammox was proven to be easier to maintain than partial nitritation/anammox and still provides significant aeration and carbon savings compared to traditional nitrification/denitrification. There is a long-standing interest in combining shortcut nitrogen removal with biological phosphorus removal, without much success. In this study, biological phosphorus removal was achieved in an A/B process with A-stage WAS fermentation and shortcut nitrogen removal in B-stage via partial denitrification. / Doctor of Philosophy / When the activated sludge process was first implemented at the beginning of the 20th century, the goal was mainly oxygen demand reduction. In the past few decades, treatment goals have expanded to include nutrient (nitrogen and phosphorus) removal, in response to regulations protecting receiving bodies of water. The only practical way to remove nitrogen in municipal wastewater is via biological treatment, utilizing bacteria, and sometimes archaea, to convert the influent ammonium to dinitrogen gas. Orthophosphate on the other hand can either be removed via chemical precipitation using metal salts or by conversion to and storage of polyphosphate by polyphosphate accumulating organisms (PAO) and then removed in the waste sludge. Nitrification/denitrification and chemical phosphorus removal are well-established practices but utilize more resources than processes without nutrient removal in the form of chemical addition (alkalinity for nitrification, external carbon for denitrification, and metal salts for chemical phosphorus removal), increased reactor volume, and increased aeration energy. Intensification refers to utilizing wastewater treatment processes that decrease chemical and energy demands, increase energy recovery, and reduce the process footprint (or increased capacity in an existing footprint) all while providing the same level of nutrient removal as traditional methods. Shortcut nitrogen removal processes; including nitrite shunt, partial nitritation/anammox, and partial denitrification/anammox, as well as low-carbon biological phosphorus removal, were critically-evaluated in this study with an overall objective of intensification of existing infrastructure. Partial nitritation/anammox is a relatively new technology that has been implemented in many full-scale sidestream processes with high ammonia concentrations, but that has proven difficult in more dilute mainstream conditions due to the difficulty in suppressing nitrite oxidizing bacteria (NOB). Even more challenging is integrating biological phosphorus removal with shortcut nitrogen removal, because biological phosphorus removal requires the readily biodegradable carbon that is diverted. Partial denitrification/anammox provides a viable alternation to partial nitritation/anammox, which may be better suited for integration with biological phosphorus removal.

Page generated in 0.509 seconds