• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da formação de coacervatos com nitrosilos complexos de rutênio / Study of the formation of coacervates with ruthenium nitrosyl complexes

Sampaio, Nayara Syndel Franco Soares January 2013 (has links)
SAMPAIO, N. S. F. S. Estudo da formação de coacervatos com nitrosilos complexos de rutênio. 2013. 75 f. Dissertação (Mestrado em Química) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. / Submitted by Daniel Eduardo Alencar da Silva (dealencar.silva@gmail.com) on 2014-11-26T21:13:16Z No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5) / Approved for entry into archive by José Jairo Viana de Sousa(jairo@ufc.br) on 2015-11-25T12:31:59Z (GMT) No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5) / Made available in DSpace on 2015-11-25T12:31:59Z (GMT). No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5) Previous issue date: 2013 / This work reports the preparation of a new coacervate by mixture of aqueous solution of sodium polyphosphate and nitrosyl ruthenium complexes. The complexes used were: cis-[Ru(bpy)2(L)(NO)]n+, where L = 1-methylimidazole (MeimN), imidazole (ImN) and sulfite (SO32-). The preparation of the coacervates is possible only when ethanol is used. In accord of characterization of the coacervates the electronic absorption spectroscopy (UV-Vis) shows the characteristics bands of complex indicating their presence in the coacervates. Even after the preparation of the coacervates the infrared spectra show the presence of the NO+ group. Therefore, the preparation doesn’t change the form (oxidation state) of the NO ligand attached in the complexes. The nuclear magnetic resonance (NMR) 1H spectra have showed the signals of the hydrogen of the ligands into the coordination sphere of the complexes. Several compositions to coacervates are possible only changing the initial concentration of the complexes into mixture. The aqueous solution of sodium polyphosphate and the coacervates have showed interesting features related to conversion process nitrosyl-nitro. The conversion process nitrosyl-nitro occurs slowly into aqueous solution of the sodium polyphosphate at pH 7,0 but into the coacervates there’s no evidence of conversion process nitrosyl-nitro during 12 months. The shifting of the metal-ligand charge-transfer (MLCT) band from 332nm to 450nm was used to evaluated the conversion process nitrosyl-nitro by electronic absorption spectroscopy (UV-Vis). The release of the nitric oxide in the coacervates was induced by photochemical and chemical reduction. In both situations the release occurred and the complexes showed the properties of the nitric oxide releasing. / O trabalho reporta o estudo da formação de um novo coacervato preparado a partir da mistura de soluções aquosas de polifosfato de sódio e nitrosilos complexos de rutênio. Foram utilizados os nitrosilos complexos cis-[Ru(bpy)2(L)(NO)]n+, com L=1-metilimidazol (MeimN), imidazol (ImN) ou sulfito (SO32-). A formação dos coacervatos se mostrou possível alterando a metodologia tradicional pela adição de etanol. Com relação à caracterização dos coacervatos a espectroscopia eletrônica na região do UV-Vis mostra as bandas características dos complexos indicando a presença deles nos coacervatos. A espectroscopia de absorção na região do infravermelho indica que após a coacervação, o oxido nítrico (NO) mantém-se coordenado ao complexo na forma NO+ sugerindo que os coacervatos não interferem no estado de oxidação do NO nos complexos. Os espectros de ressonância magnética nuclear de 1H apontam a presença dos ligantes (L) que fazem parte da esfera de coordenação dos complexos, mais uma vez sugerindo a presença dos complexos nos coacervatos. Os resultados mostram que é possível controlar a quantidade de complexo no coacervato simplesmente aumentando a quantidade de complexo no início da mistura. Os resultados mostram que as soluções de polifosfato e os coacervatos exercem um efeito muito interessante no processo de conversão nitrosilo-nitro. Em soluções de polifosfato o processo de conversão ocorre lentamente em pH 7,0 enquanto nos coacervatos o complexo permanece estável por até 12 meses sem sofrer conversão. O processo de conversão foi monitorado por espectroscopia eletrônica a região do UV-Vis pelo deslocamento da banda de transferência de carga metal-ligante (MLCT) de 332nm para 450nm. A liberação do óxido nítrico foi estudada nos coacervatos em testes baseados na redução fotoquímica e na redução química. Em ambos a liberação foi possível mostrando que os complexos nos coacervatos mantem sua capacidade de liberadores de NO.
2

Estudo da formaÃÃo de coacervatos com nitrosilos complexos de rutÃnio / Study of the formation of coacervates with ruthenium nitrosyl complexes

Nayara Syndel Franco Soares Sampaio 12 March 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O trabalho reporta o estudo da formaÃÃo de um novo coacervato preparado a partir da mistura de soluÃÃes aquosas de polifosfato de sÃdio e nitrosilos complexos de rutÃnio. Foram utilizados os nitrosilos complexos cis-[Ru(bpy)2(L)(NO)]n+, com L=1-metilimidazol (MeimN), imidazol (ImN) ou sulfito (SO32-). A formaÃÃo dos coacervatos se mostrou possÃvel alterando a metodologia tradicional pela adiÃÃo de etanol. Com relaÃÃo à caracterizaÃÃo dos coacervatos a espectroscopia eletrÃnica na regiÃo do UV-Vis mostra as bandas caracterÃsticas dos complexos indicando a presenÃa deles nos coacervatos. A espectroscopia de absorÃÃo na regiÃo do infravermelho indica que apÃs a coacervaÃÃo, o oxido nÃtrico (NO) mantÃm-se coordenado ao complexo na forma NO+ sugerindo que os coacervatos nÃo interferem no estado de oxidaÃÃo do NO nos complexos. Os espectros de ressonÃncia magnÃtica nuclear de 1H apontam a presenÃa dos ligantes (L) que fazem parte da esfera de coordenaÃÃo dos complexos, mais uma vez sugerindo a presenÃa dos complexos nos coacervatos. Os resultados mostram que à possÃvel controlar a quantidade de complexo no coacervato simplesmente aumentando a quantidade de complexo no inÃcio da mistura. Os resultados mostram que as soluÃÃes de polifosfato e os coacervatos exercem um efeito muito interessante no processo de conversÃo nitrosilo-nitro. Em soluÃÃes de polifosfato o processo de conversÃo ocorre lentamente em pH 7,0 enquanto nos coacervatos o complexo permanece estÃvel por atà 12 meses sem sofrer conversÃo. O processo de conversÃo foi monitorado por espectroscopia eletrÃnica a regiÃo do UV-Vis pelo deslocamento da banda de transferÃncia de carga metal-ligante (MLCT) de 332nm para 450nm. A liberaÃÃo do Ãxido nÃtrico foi estudada nos coacervatos em testes baseados na reduÃÃo fotoquÃmica e na reduÃÃo quÃmica. Em ambos a liberaÃÃo foi possÃvel mostrando que os complexos nos coacervatos mantem sua capacidade de liberadores de NO. / This work reports the preparation of a new coacervate by mixture of aqueous solution of sodium polyphosphate and nitrosyl ruthenium complexes. The complexes used were: cis-[Ru(bpy)2(L)(NO)]n+, where L = 1-methylimidazole (MeimN), imidazole (ImN) and sulfite (SO32-). The preparation of the coacervates is possible only when ethanol is used. In accord of characterization of the coacervates the electronic absorption spectroscopy (UV-Vis) shows the characteristics bands of complex indicating their presence in the coacervates. Even after the preparation of the coacervates the infrared spectra show the presence of the NO+ group. Therefore, the preparation doesnât change the form (oxidation state) of the NO ligand attached in the complexes. The nuclear magnetic resonance (NMR) 1H spectra have showed the signals of the hydrogen of the ligands into the coordination sphere of the complexes. Several compositions to coacervates are possible only changing the initial concentration of the complexes into mixture. The aqueous solution of sodium polyphosphate and the coacervates have showed interesting features related to conversion process nitrosyl-nitro. The conversion process nitrosyl-nitro occurs slowly into aqueous solution of the sodium polyphosphate at pH 7,0 but into the coacervates thereâs no evidence of conversion process nitrosyl-nitro during 12 months. The shifting of the metal-ligand charge-transfer (MLCT) band from 332nm to 450nm was used to evaluated the conversion process nitrosyl-nitro by electronic absorption spectroscopy (UV-Vis). The release of the nitric oxide in the coacervates was induced by photochemical and chemical reduction. In both situations the release occurred and the complexes showed the properties of the nitric oxide releasing.
3

Reatividade química de um novo nitrosilsulfito complexo trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), e desenvolvimento de filmes de amido doadores de óxido nítrico / Chemical reactivity of a new nitrosylsulphito complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), and development of a nitric oxide releasing starch-based film.

Roveda Júnior, Antonio Carlos 03 February 2016 (has links)
Na busca por novos materiais doadores de óxido nítrico (NO), o presente trabalho descreve o desenvolvimento de um filme à base de amido de mandioca, no qual foi incorporado um nitrosilo complexo de rutênio, e o estudo da liberação de NO nesse material. O nitrosilo complexo trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamida) apresenta a propriedade de liberar NO de forma controlada, por meio de fotólise (λirr = 310-370 nm) e de redução química. A incorporação desse complexo em filmes de amido foi realizada em condições brandas, resultando em um novo material para o armazenamento e liberação de NO, designado como CSx-RuNOisn. Os ensaios espectroscópicos indicaram que a esfera de coordenação do complexo RuNOisn permaneceu inalterada durante a produção dos filmes. A exposição de CSx-RuNOisn à luz (λirr = 355 nm) levou à liberação de NO e provavelmente à formação do fotoproduto trans [RuIII(NH3)4isn(H2O)]3+ no filme. A reação desse aquocomplexo de rutênio(III) com solução aquosa contendo nitrito de sódio regenerou o complexo de partida, RuNOisn. A identificação e quantificação do NO liberado durante a fotólise foi efetuada por meio da reação com oximioglobina. Durante o tempo de irradiação de 17 minutos, foram liberados 5,02 ± 0,12 μM de NO (10, 04 ± 0,24 nmol NO em 2 mL). Os ensaios de liberação de NO desencadeada por redução foram realizados utilizando-se L-cisteína como redutor. O fluxo de NO liberado a partir da reação com cisteína perdurou por mais de 7 horas, alcançando-se concentrações fisiologicamente relevantes, com fluxo médio de 1,9 pmol NO s-1 cm-2 de filme. Esse valor é comparável àquele produzido por células endoteliais, em que o fluxo de NO é de 1,67 pmol s-1 cm-2. Os resultados preliminares de degradação dos filmes in vivo sugerem que o material foi degradado pelo organismo em 30 dias. Todos os resultados alcançados sugerem que o filme CSx-RuNOisn é um candidato promissor para aplicações em meio biológico. Um novo complexo de rutênio contendo o ligante nitrosilsulfito (N(O)SO3 -) foi isolado, trans [Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamida, X = PF6- ou SiPF6 2-), e a sua estrutura cristalina determinada por difração de raio-X. A síntese desse complexo foi realizada por meio da reação entre trans-[Ru(NH3)4(isn)(NO)]3+ e íons sulfito (SO32-). O ataque nucleofílico do SO32- ocorreu no nitrogênio do ligante nitrosônio (NO) coordenado ao centro metálico de rutênio ([Ru-NO+]), originando o ligante O=N-SO3-: [RuNO+]3+ + SO32- →[Ru(N(O)SO3)]+. Observou-se que em meio aquoso, no intervalo de pH de 7,4 a 5,2 o complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ é estável, e a velocidade de decomposição (labilização do ligante isn) variou de k = 0,86 a 3,07 × 10-5 s-1. Em soluções mais ácidas (tampão ácido acético/acetato pH 4,2, 3,9, ou 1,0 M ácido trifluoroacético) o complexo trans-[Ru(NH3)4(isn)(N(O)SO3)]+ decompõe-se formando o respectivo nitrosilo complexo trans- [RuII(NH3)4(isn)NO+]3+. A reação do íon trans-[Ru(NH3)4(isn)(N(O)SO3)]+ com íons hidróxido (OH-) dá origem ao respectivo nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+, que foi caracterizado por RMN de 15N e por espectroscopia eletrônica. As constantes de velocidade para essa reação são k = 6,16 ± 0,22 M-1 s-1 à T = 25oC, e k = 2,15 ± 0,07 M-1 s-1 à T = 15oC. A reação entre o nitrosilo complexo trans [RuII(NH3)4(isn)NO+]3+ e íons OH- também resulta na formação do nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+. Neste caso, a constante de velocidade foi estimada entre k = 47-58 M-1 s-1 à T = 25oC, e o valor obtido experimentalmente à T = 15oC foi de k = 10,53 ± 0,29 M-1 s-1. O espectro eletrônico do íon complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ em meio aquoso apresentou uma banda larga com λ max = 362 nm (ε ∼6000 M-1 cm-1), atribuída por cálculos teóricos às seguintes transições: transferência de carga do metal para o ligante (TCML) Ru → N(O)SO3 e Ru → isn, e também d → d. Os ensaios preliminares de fotólise (λ irrad = 355 nm) do complexo trans[Ru(NH3)4(isn)(N(O)SO3)](PF6) em solução de tampão fosfato (pH 7,4) sugerem a formação das seguintes espécies nos intervalos iniciais de fotólise: i) NO, ii) SO3 •-, e iii) isn (labilizado do complexo). O mecanismo para a formação desses produtos ainda está sob investigação. / Aiming the production of new nitric oxide releasing materials (NORM), this work reports the development of a cassava starch based film, in which a ruthenium nitrosyl complex was impregnated, and evaluate the NO release from this film. Ruthenium nitrosyl complex trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamide) is able to release NO in a controlled manner through both photolysis (λirr = 310-370 nm) and chemical reduction. The incorporation of such complex into the starch-based films was performed under mild conditions, yielding a new material able to store and release NO, abbreviated as CSx-RuNOisn. Spectroscopic analysis of CSx-RuNOisn indicated that the coordination sphere of RuNOisn remained intact during film production. Exposure of CSx-RuNOisn to long wave UV-light (λirr = 355 nm) leads to NO release and likely to the formation of the paramagnetic photoproduct trans-[RuIII(NH3)4isn(H2O)]3+ in the film. Reaction of this aquoruthenium(III) complex with aqueous nitrite regenerates RuNOisn in the film. Delivery of NO upon photolysis of CSx-RuNO isn was verified and quantified by trapping with oxymyoglobin. The calculated concentration of NO released from the film was 5.02 ± 0.12 μM (10.04 ± 0.24 nmol NO in a 2 mL) after approximately 17 min of irradiation (500 laser pulses at 2 s intervals). Moreover, NO release upon chemical reduction was carried out using L-cysteine as a reductant. Cysteine-mediated NO delivery from CSx-RuNOisn persisted for more than 7 h, during which physiologically relevant NO concentrations were liberated (average flux of 1.9 pmol NO s-1 cm-2 of film). This value is comparable to that produced by endothelial cells (1.67 pmol s-1 cm-2). Preliminary results about the biodegradation of the films in vivo suggest that the films were completely absorbed by the organism in a period of 30 days. These results suggest that CSx-RuNOisn is a promising candidate for use in biological applications. A new nitrosylsulphito complex bearing the ligand (N(O)SO3-) was isolated, trans-[Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamide, X = PF6- or SiPF6-), and its structure was determined by X-Ray crystallography. This complex was obtained by the reaction between trans-[Ru(NH3)4(isn)(NO)]3+ and sulfite ions (SO32-). X-Ray results confirmed that the nucleophilic attack of the sulphite anion (SO32-) was on the nitrogen atom of the nitrosyl ligand (NO) coordinated to the ruthenium center ([Ru-NO+]), yielding the ligand O=N-SO3-: [RuNO+]3+ + SO32- → [Ru(N(O)SO3)]+. Complex trans- [Ru(NH3)4(isn)(N(O)SO3)]+ is stable in aqueous solution from pH 7.4 to 5.2, and the decomposition rates (k) (due to the isn labilization) are in the range of k = 0.86-3.07 × 10-5 s-1. In more acidic conditions, (acetate buffer pH 4.2, 3.9, and trifluoroacetic acid solution 1.0 M) complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ is converted into the respective nitrosyl trans-[RuII(NH3)4(isn)NO+]3+. Reaction of trans-[Ru(NH3)4(isn)(N(O)SO3)]+ and hydroxide ions (OH-) yielded the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+, which was characterized by 15N NMR and electronic spectroscopy. Rate constants for such reaction are k = 6.16 ± 0.22 M-1 s-1 at 25oC, and k = 2.15 ± 0.07 M-1 s-1 at 15oC. In the case of complex trans-[RuII(NH3)4(isn)NO+]3+, its reaction with OH- also yield the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+. The estimated rate constant for such reaction was k = 46.9-57.6 M-1 s-1 at 25oC, and the experimental value obtained at 15oC was k = 10.53 ± 0.29 M-1 s-1. The ion complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ showed an intense and broad band at 362 nm (ε∼6000 M-1 cm-1) in aqueous solutions, which was assigned by DFT calculations to the following transitions: metal to ligand charge transfer (MLCT) Ru→N(O)SO3 and Ru→isn, and d→d as well. Preliminary photolysis assays (λirrad = 355 nm) performed with complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6) in phosphate buffer solution (pH 7,4) suggests that the following species have been formed (in the initial photolysis period): i) NO, ii) SO3•-, and iii) isn (labilized). The whole mechanism to yield such products is still under investigation.
4

Reatividade química de um novo nitrosilsulfito complexo trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), e desenvolvimento de filmes de amido doadores de óxido nítrico / Chemical reactivity of a new nitrosylsulphito complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), and development of a nitric oxide releasing starch-based film.

Antonio Carlos Roveda Júnior 03 February 2016 (has links)
Na busca por novos materiais doadores de óxido nítrico (NO), o presente trabalho descreve o desenvolvimento de um filme à base de amido de mandioca, no qual foi incorporado um nitrosilo complexo de rutênio, e o estudo da liberação de NO nesse material. O nitrosilo complexo trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamida) apresenta a propriedade de liberar NO de forma controlada, por meio de fotólise (λirr = 310-370 nm) e de redução química. A incorporação desse complexo em filmes de amido foi realizada em condições brandas, resultando em um novo material para o armazenamento e liberação de NO, designado como CSx-RuNOisn. Os ensaios espectroscópicos indicaram que a esfera de coordenação do complexo RuNOisn permaneceu inalterada durante a produção dos filmes. A exposição de CSx-RuNOisn à luz (λirr = 355 nm) levou à liberação de NO e provavelmente à formação do fotoproduto trans [RuIII(NH3)4isn(H2O)]3+ no filme. A reação desse aquocomplexo de rutênio(III) com solução aquosa contendo nitrito de sódio regenerou o complexo de partida, RuNOisn. A identificação e quantificação do NO liberado durante a fotólise foi efetuada por meio da reação com oximioglobina. Durante o tempo de irradiação de 17 minutos, foram liberados 5,02 ± 0,12 μM de NO (10, 04 ± 0,24 nmol NO em 2 mL). Os ensaios de liberação de NO desencadeada por redução foram realizados utilizando-se L-cisteína como redutor. O fluxo de NO liberado a partir da reação com cisteína perdurou por mais de 7 horas, alcançando-se concentrações fisiologicamente relevantes, com fluxo médio de 1,9 pmol NO s-1 cm-2 de filme. Esse valor é comparável àquele produzido por células endoteliais, em que o fluxo de NO é de 1,67 pmol s-1 cm-2. Os resultados preliminares de degradação dos filmes in vivo sugerem que o material foi degradado pelo organismo em 30 dias. Todos os resultados alcançados sugerem que o filme CSx-RuNOisn é um candidato promissor para aplicações em meio biológico. Um novo complexo de rutênio contendo o ligante nitrosilsulfito (N(O)SO3 -) foi isolado, trans [Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamida, X = PF6- ou SiPF6 2-), e a sua estrutura cristalina determinada por difração de raio-X. A síntese desse complexo foi realizada por meio da reação entre trans-[Ru(NH3)4(isn)(NO)]3+ e íons sulfito (SO32-). O ataque nucleofílico do SO32- ocorreu no nitrogênio do ligante nitrosônio (NO) coordenado ao centro metálico de rutênio ([Ru-NO+]), originando o ligante O=N-SO3-: [RuNO+]3+ + SO32- →[Ru(N(O)SO3)]+. Observou-se que em meio aquoso, no intervalo de pH de 7,4 a 5,2 o complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ é estável, e a velocidade de decomposição (labilização do ligante isn) variou de k = 0,86 a 3,07 × 10-5 s-1. Em soluções mais ácidas (tampão ácido acético/acetato pH 4,2, 3,9, ou 1,0 M ácido trifluoroacético) o complexo trans-[Ru(NH3)4(isn)(N(O)SO3)]+ decompõe-se formando o respectivo nitrosilo complexo trans- [RuII(NH3)4(isn)NO+]3+. A reação do íon trans-[Ru(NH3)4(isn)(N(O)SO3)]+ com íons hidróxido (OH-) dá origem ao respectivo nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+, que foi caracterizado por RMN de 15N e por espectroscopia eletrônica. As constantes de velocidade para essa reação são k = 6,16 ± 0,22 M-1 s-1 à T = 25oC, e k = 2,15 ± 0,07 M-1 s-1 à T = 15oC. A reação entre o nitrosilo complexo trans [RuII(NH3)4(isn)NO+]3+ e íons OH- também resulta na formação do nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+. Neste caso, a constante de velocidade foi estimada entre k = 47-58 M-1 s-1 à T = 25oC, e o valor obtido experimentalmente à T = 15oC foi de k = 10,53 ± 0,29 M-1 s-1. O espectro eletrônico do íon complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ em meio aquoso apresentou uma banda larga com λ max = 362 nm (ε ∼6000 M-1 cm-1), atribuída por cálculos teóricos às seguintes transições: transferência de carga do metal para o ligante (TCML) Ru → N(O)SO3 e Ru → isn, e também d → d. Os ensaios preliminares de fotólise (λ irrad = 355 nm) do complexo trans[Ru(NH3)4(isn)(N(O)SO3)](PF6) em solução de tampão fosfato (pH 7,4) sugerem a formação das seguintes espécies nos intervalos iniciais de fotólise: i) NO, ii) SO3 •-, e iii) isn (labilizado do complexo). O mecanismo para a formação desses produtos ainda está sob investigação. / Aiming the production of new nitric oxide releasing materials (NORM), this work reports the development of a cassava starch based film, in which a ruthenium nitrosyl complex was impregnated, and evaluate the NO release from this film. Ruthenium nitrosyl complex trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamide) is able to release NO in a controlled manner through both photolysis (λirr = 310-370 nm) and chemical reduction. The incorporation of such complex into the starch-based films was performed under mild conditions, yielding a new material able to store and release NO, abbreviated as CSx-RuNOisn. Spectroscopic analysis of CSx-RuNOisn indicated that the coordination sphere of RuNOisn remained intact during film production. Exposure of CSx-RuNOisn to long wave UV-light (λirr = 355 nm) leads to NO release and likely to the formation of the paramagnetic photoproduct trans-[RuIII(NH3)4isn(H2O)]3+ in the film. Reaction of this aquoruthenium(III) complex with aqueous nitrite regenerates RuNOisn in the film. Delivery of NO upon photolysis of CSx-RuNO isn was verified and quantified by trapping with oxymyoglobin. The calculated concentration of NO released from the film was 5.02 ± 0.12 μM (10.04 ± 0.24 nmol NO in a 2 mL) after approximately 17 min of irradiation (500 laser pulses at 2 s intervals). Moreover, NO release upon chemical reduction was carried out using L-cysteine as a reductant. Cysteine-mediated NO delivery from CSx-RuNOisn persisted for more than 7 h, during which physiologically relevant NO concentrations were liberated (average flux of 1.9 pmol NO s-1 cm-2 of film). This value is comparable to that produced by endothelial cells (1.67 pmol s-1 cm-2). Preliminary results about the biodegradation of the films in vivo suggest that the films were completely absorbed by the organism in a period of 30 days. These results suggest that CSx-RuNOisn is a promising candidate for use in biological applications. A new nitrosylsulphito complex bearing the ligand (N(O)SO3-) was isolated, trans-[Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamide, X = PF6- or SiPF6-), and its structure was determined by X-Ray crystallography. This complex was obtained by the reaction between trans-[Ru(NH3)4(isn)(NO)]3+ and sulfite ions (SO32-). X-Ray results confirmed that the nucleophilic attack of the sulphite anion (SO32-) was on the nitrogen atom of the nitrosyl ligand (NO) coordinated to the ruthenium center ([Ru-NO+]), yielding the ligand O=N-SO3-: [RuNO+]3+ + SO32- → [Ru(N(O)SO3)]+. Complex trans- [Ru(NH3)4(isn)(N(O)SO3)]+ is stable in aqueous solution from pH 7.4 to 5.2, and the decomposition rates (k) (due to the isn labilization) are in the range of k = 0.86-3.07 × 10-5 s-1. In more acidic conditions, (acetate buffer pH 4.2, 3.9, and trifluoroacetic acid solution 1.0 M) complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ is converted into the respective nitrosyl trans-[RuII(NH3)4(isn)NO+]3+. Reaction of trans-[Ru(NH3)4(isn)(N(O)SO3)]+ and hydroxide ions (OH-) yielded the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+, which was characterized by 15N NMR and electronic spectroscopy. Rate constants for such reaction are k = 6.16 ± 0.22 M-1 s-1 at 25oC, and k = 2.15 ± 0.07 M-1 s-1 at 15oC. In the case of complex trans-[RuII(NH3)4(isn)NO+]3+, its reaction with OH- also yield the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+. The estimated rate constant for such reaction was k = 46.9-57.6 M-1 s-1 at 25oC, and the experimental value obtained at 15oC was k = 10.53 ± 0.29 M-1 s-1. The ion complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ showed an intense and broad band at 362 nm (ε∼6000 M-1 cm-1) in aqueous solutions, which was assigned by DFT calculations to the following transitions: metal to ligand charge transfer (MLCT) Ru→N(O)SO3 and Ru→isn, and d→d as well. Preliminary photolysis assays (λirrad = 355 nm) performed with complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6) in phosphate buffer solution (pH 7,4) suggests that the following species have been formed (in the initial photolysis period): i) NO, ii) SO3•-, and iii) isn (labilized). The whole mechanism to yield such products is still under investigation.

Page generated in 0.0649 seconds