• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 11
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cryptic Materials And Coacervates

Sun, Yimin 14 May 2021 (has links)
Hydrogels have been used for many applications, including as a mimic for the extracellular matrix (ECM) in cell culture. For example, a hydrogel containing protease-sensitive substrates can be used to create an environment that cells can modify via enzymatic degradation. In this study, we propose combining traditional hydrogels for cell culture with “cryptic” site that bury proteolytically cleavable peptide sequences using complex coacervation. Here, the goal is to take advantage of the phase separation of coacervates to protect the cleavable peptide against degradation until acted upon by a mechanical force, such as those generated by adherent cells. To this end, we studied the encapsulation of chymotrypsin as a model protease into our coacervate system and investigated the effect of incorporation into the coacervate on its activity. We have also synthesized a peptide containing cleavable site for both chymotrypsin as our model protease and more biologically relevant matrix metalloproteinases (MMPs). Future efforts will look to incorporate this peptide into both coacervate and hydrogel and test the level of cryptic response.
2

HYDROPHOBICALLY MODIFIED POLYELECTROLYTES TO TUNE THE PROPERTIES OF COACERVATES

Wang, Qiaoyun 15 July 2020 (has links)
No description available.
3

Estudo da formaÃÃo de coacervatos com nitrosilos complexos de rutÃnio / Study of the formation of coacervates with ruthenium nitrosyl complexes

Nayara Syndel Franco Soares Sampaio 12 March 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O trabalho reporta o estudo da formaÃÃo de um novo coacervato preparado a partir da mistura de soluÃÃes aquosas de polifosfato de sÃdio e nitrosilos complexos de rutÃnio. Foram utilizados os nitrosilos complexos cis-[Ru(bpy)2(L)(NO)]n+, com L=1-metilimidazol (MeimN), imidazol (ImN) ou sulfito (SO32-). A formaÃÃo dos coacervatos se mostrou possÃvel alterando a metodologia tradicional pela adiÃÃo de etanol. Com relaÃÃo à caracterizaÃÃo dos coacervatos a espectroscopia eletrÃnica na regiÃo do UV-Vis mostra as bandas caracterÃsticas dos complexos indicando a presenÃa deles nos coacervatos. A espectroscopia de absorÃÃo na regiÃo do infravermelho indica que apÃs a coacervaÃÃo, o oxido nÃtrico (NO) mantÃm-se coordenado ao complexo na forma NO+ sugerindo que os coacervatos nÃo interferem no estado de oxidaÃÃo do NO nos complexos. Os espectros de ressonÃncia magnÃtica nuclear de 1H apontam a presenÃa dos ligantes (L) que fazem parte da esfera de coordenaÃÃo dos complexos, mais uma vez sugerindo a presenÃa dos complexos nos coacervatos. Os resultados mostram que à possÃvel controlar a quantidade de complexo no coacervato simplesmente aumentando a quantidade de complexo no inÃcio da mistura. Os resultados mostram que as soluÃÃes de polifosfato e os coacervatos exercem um efeito muito interessante no processo de conversÃo nitrosilo-nitro. Em soluÃÃes de polifosfato o processo de conversÃo ocorre lentamente em pH 7,0 enquanto nos coacervatos o complexo permanece estÃvel por atà 12 meses sem sofrer conversÃo. O processo de conversÃo foi monitorado por espectroscopia eletrÃnica a regiÃo do UV-Vis pelo deslocamento da banda de transferÃncia de carga metal-ligante (MLCT) de 332nm para 450nm. A liberaÃÃo do Ãxido nÃtrico foi estudada nos coacervatos em testes baseados na reduÃÃo fotoquÃmica e na reduÃÃo quÃmica. Em ambos a liberaÃÃo foi possÃvel mostrando que os complexos nos coacervatos mantem sua capacidade de liberadores de NO. / This work reports the preparation of a new coacervate by mixture of aqueous solution of sodium polyphosphate and nitrosyl ruthenium complexes. The complexes used were: cis-[Ru(bpy)2(L)(NO)]n+, where L = 1-methylimidazole (MeimN), imidazole (ImN) and sulfite (SO32-). The preparation of the coacervates is possible only when ethanol is used. In accord of characterization of the coacervates the electronic absorption spectroscopy (UV-Vis) shows the characteristics bands of complex indicating their presence in the coacervates. Even after the preparation of the coacervates the infrared spectra show the presence of the NO+ group. Therefore, the preparation doesnât change the form (oxidation state) of the NO ligand attached in the complexes. The nuclear magnetic resonance (NMR) 1H spectra have showed the signals of the hydrogen of the ligands into the coordination sphere of the complexes. Several compositions to coacervates are possible only changing the initial concentration of the complexes into mixture. The aqueous solution of sodium polyphosphate and the coacervates have showed interesting features related to conversion process nitrosyl-nitro. The conversion process nitrosyl-nitro occurs slowly into aqueous solution of the sodium polyphosphate at pH 7,0 but into the coacervates thereâs no evidence of conversion process nitrosyl-nitro during 12 months. The shifting of the metal-ligand charge-transfer (MLCT) band from 332nm to 450nm was used to evaluated the conversion process nitrosyl-nitro by electronic absorption spectroscopy (UV-Vis). The release of the nitric oxide in the coacervates was induced by photochemical and chemical reduction. In both situations the release occurred and the complexes showed the properties of the nitric oxide releasing.
4

UNDERSTANDING COMPLEX COACERVATION OF LOW CHARGE DENSITY COPOLYMERS AND LATEXES

Bryant, Nicholas 01 July 2021 (has links)
Many coatings only need to either be durable or fast drying, usually sacrificing long term stability in favor of quick setting, or vice versa. One coating type that cannot afford to sacrifice either performance feature is traffic paint. These paints are made up of a weak polycation, an anionic latex, and a volatile base which evaporates upon application. The high pH in the initial formulation deprotonates the polycation, rendering it charge neutral. However, upon evaporation, the resulting drop in pH allows for the electrostatic complexation between the polycation and the latex. The electrostatic interactions used in these formulations parallels that of complex coacervation, an associative liquid-liquid phase separation. In this thesis, we will take advantage of model coacervate systems to elucidate the design parameters necessary for the formulations to serve as paints. We used a series of simplified systems, starting with a system consisting of a weakly cationic homopolymer and weakly anionic homopolymer before moving on to anionic copolymers with decreasing charge density, and ultimately an anionic latex. We investigated the effects of pH, charge stoichiometry, and salt concentration for each of these systems, using turbidimetry and optical microscopy as a means of measuring the extent of coacervation. We determined that, the removal of 99.9% of the charge on our polymers was necessary for coacervation to no longer occur. This can be achieved using either salt or pH, however, salt may be preferable, due to the inherent hazardous properties of highly acidic or basic solutions. Very excitingly, we were able to observe coacervation with latex particles. To our knowledge, there are no known observations of polymer-particle coacervation prior to this study. These results suggest that the underlying physics and design principles associated with fast setting paints can be explored using complex coacervation, and that a much broader range of parameters can be used to control the setting of these materials, beyond just pH used in existing technology. Future efforts are still needed to better understand the effect that polymer chemistry has on the complexation of these materials, and how it also affects the mechanical and adhesive properties of coating produced by such formulations.
5

Nano-scaled Cage-like Macroions in Solution - Individual Molecule, Self-assembly and Phase Transition

Yang, Yuqing 25 April 2023 (has links)
No description available.
6

Modulating bacteria-surface interactions via water-soluble peptidomimetic polymers

Vishwakarma, Apoorva January 2022 (has links)
No description available.
7

An In Vitro Method for Measuring the Dissolution and Release of Suspended Solids from Coacervates on the Skin Surface

Baalbaki, Nada H. 16 June 2017 (has links)
No description available.
8

A New Class of Biodegradable, Coacervate-Forming, Thermoresponsive Polyesters Based on N-Substituted Diols

Swanson, John Patrick 09 June 2016 (has links)
No description available.
9

EFFECTS OF SOLUTION COMPOSITION (SALTS, PH, DIELECTRIC CONSTANT) ON POLYELECTROLYTE COMPLEX (PEC) FORMATION AND THEIR PROPERTIES

ZHANG, HUAN January 2018 (has links)
No description available.
10

Synthesis of a polar conjugated polythiophene for 3D-printing of complex coacervates

Heimonen, Johanna January 2021 (has links)
The aim of this thesis was to synthesize a functionalized polar conjugated polythiophene that could be (3D-) printed into form-stable structures for bio-interfacing. The material design rationale aimed for a water-processable polymer that had the capability of electronic and ionic conduction, by using a thiophene backbone and oligoethylene side chains. Functionalization of the oligoethylene side chains with carboxylate groups created a polyanion, which allowed for a bio-inspired approach to combine printability and form-stability through formation of complex coacervates. The synthesis of the conjugated monomer and polymer was optimized to provide a more sustainable and material efficient synthesis route. Combined structural analysis with 1H-NMR, FT-IR and UV-vis revealed successful synthesis of the target polymer. Spectro electrochemistry revealed that the polymer was optically and electrochemically active in both the protected and deprotected form. The obtained material is processable from water, and initial tests revealed that crosslinking can be achieved through formation of acid dimers, ionic crosslinks with Ca2+ ions and complex coacervation with a polycation. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>

Page generated in 0.0579 seconds