• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la régulation de la nitrogénase chez Rhodobacter capsulatus dans la noirceur

Riahi, Nesrine 09 1900 (has links)
L’atmosphère terrestre est très riche en azote (N2). Mais cet azote diatomique est sous une forme très stable, inutilisable par la majorité des êtres vivants malgré qu’il soit indispensable pour la synthèse de matériels organiques. Seuls les procaryotes diazotrophiques sont capables de vivre avec le N2 comme source d’azote. La fixation d’azote est un processus qui permet de produire des substances aminées à partir de l’azote gazeux présent dans l’atmosphère (78%). Cependant, ce processus est très complexe et nécessite la biosynthèse d’une vingtaine de protéines et la consommation de beaucoup d’énergie (16 molécules d’ATP par mole de N2 fixé). C’est la raison pour laquelle ce phénomène est rigoureusement régulé. Les bactéries photosynthétiques pourpres non-sulfureuses sont connues pour leur capacité de faire la fixation de l’azote. Les études faites à la lumière, dans le mode de croissance préféré de ces bactéries (photosynthèse anaérobie), ont montré que la nitrogénase (enzyme responsable de la fixation du diazote) est sujet d’une régulation à trois niveaux: une régulation transcriptionnelle de NifA (protéine activatrice de la transcription des gènes nif), une régulation post-traductionnelle de l’activité de NifA envers l’activation de la transcription des autres gènes nif, et la régulation post-traductionnelle de l’activité de la nitrogénase quand les cellules sont soumises à un choc d’ammoniaque. Le système de régulation déjà décrit fait intervenir essentiellement une protéine membranaire, AmtB, et les deux protéines PII, GlnB et GlnK. Il est connu depuis long temps que la nitrogénase est aussi régulée quand une culture photosynthétique est exposée à la noirceur, mais jusqu’aujourd’hui, on ignore encore la nature des systèmes intervenants dans cette régulation. Ainsi, parmi les questions qui peuvent se poser: quelles sont les protéines qui interviennent dans l’inactivation de la nitrogénase lorsqu’une culture anaérobie est placée à la noirceur? Une analyse de plusieurs souches mutantes, amtB- , glnK- , glnB- et amtY- poussées dans différentes conditions de limitation en azote, serait une façon pour répondre à ces interrogations. Alors, avec le suivi de l’activité de la nitrogénase et le Western Blot, on a montré que le choc de noirceur provoquerait un "Switch-off" de l’activité de la nitrogénase dû à une ADP-ribosylation de la protéine Fe. On a réussit aussi à montrer que ii tout le système déjà impliqué dans la réponse à un choc d’ammoniaque, est également nécessaire pour une réponse à un manque de lumière ou d’énergie (les protéines AmtB, GlnK, GlnB, DraG, DraT et AmtY). Or, Rhodobacter capsulatus est capable de fixer l’azote et de croitre aussi bien dans la micro-aérobie à la noirceur que dans des conditions de photosynthèse anaérobies, mais jusqu'à maintenant sa régulation dans l’obscurité est peu étudiée. L’étude de la fixation d’azote à la noirceur nous a permis de montrer que le complexe membranaire Rnf n’est pas nécessaire à la croissance de R. capsulatus dans de telles conditions. Dans le but de développer une façon d’étudier la régulation de la croissance dans ce mode, on a tout d’abord essayé d’identifier les conditions opératoires (O2, [NH4 + ]) permettant à R. capsulatus de fixer l’azote en microaérobie. L’optimisation de cette croissance a montré que la concentration optimale d’oxygène nécessaire est de 10% mélangé avec de l’azote. / The atmosphere of the Earth is very rich in nitrogen (N2). However, diatomic nitrogen is very stable and therefore unusable by the majority of life forms even though it is necessary for the synthesis of a variety of organic compounds. Only diazotrophic procaryotes are capable of using N2 as nitrogen source. Their nitrogen fixation allows the production of aminated compounds from atmospheric nitrogen (78 %). However, this process is very complex and requires the biosynthesis of about twenty proteins and the consumption of a lot of energy (16 molecules of ATP per molecule of N2 fixed), thus necessitating its tight regulation. The purple non-sulfur photosynthetic bacteria are known for their ability to carry out nitrogen fixation. Studies conducted in the light, the preferred mode of growth of these bacteria (anaerobic photosynthetic), have shown that nitrogenase (the enzyme responsible for dinitrogen fixation) is subject to regulation at three levels: transcriptional regulation of NifA (activator protein for the transcription of nif genes), posttranslational regulation of the activity of NifA to activate nif gene transcription, and posttranslational regulation of nitrogenase activity when cells are subjected to an ammonium shock. The control system already described involves essentially a membrane protein, AmtB and both PII proteins, GlnK and GlnB. It has long been known that nitrogenase is regulated when light is suddenly removed from a culture, but until now it is unclear whether these systems are also involved in the regulation of nitrogen fixation in dark. Thus, one outstanding question is what are the proteins involved in the inactivation of nitrogenase when a light-grown culture is placed in the dark? An analysis of several mutant strains; amtB-, glnK-, glnB-, and amtY- under different conditions of nitrogen deficiency was used to address this question. Using measurements of nitrogenase activity and Fe protein modification by Western blotting, we were able to show that darkness causes a "switch-off” of nitrogenase due to ADP- ribosylation of Fe protein. Thus, the system that has already been described as involved in the response to a lack of ammonia, is also required for a response to a lack of light or energy (AmtB, GlnK, GlnB, DraG, and DraT, and AmtY). However, Rhodobacter capsulatus is also able to fix nitrogen and grow micro-aerobically in the dark as well as photosynthetically under anaerobic conditions, but so far its regulation in the dark has been little studied. The study of nitrogen fixation in the dark allowed us to show that the Rnf membrane complex is not required for growth of R. capsulatus in such conditions. In order to develop a way to study its regulation during this growth mode, we have attempted to identify the operating conditions (O2, [NH4+]), allowing R. capsulatus to fix nitrogen micro-aerobically. The optimization of this conditions has shown that the optimal concentration of oxygen required is 10% mixed with nitrogen.
2

Étude de la régulation de la nitrogénase chez Rhodobacter capsulatus dans la noirceur

Riahi, Nesrine 09 1900 (has links)
L’atmosphère terrestre est très riche en azote (N2). Mais cet azote diatomique est sous une forme très stable, inutilisable par la majorité des êtres vivants malgré qu’il soit indispensable pour la synthèse de matériels organiques. Seuls les procaryotes diazotrophiques sont capables de vivre avec le N2 comme source d’azote. La fixation d’azote est un processus qui permet de produire des substances aminées à partir de l’azote gazeux présent dans l’atmosphère (78%). Cependant, ce processus est très complexe et nécessite la biosynthèse d’une vingtaine de protéines et la consommation de beaucoup d’énergie (16 molécules d’ATP par mole de N2 fixé). C’est la raison pour laquelle ce phénomène est rigoureusement régulé. Les bactéries photosynthétiques pourpres non-sulfureuses sont connues pour leur capacité de faire la fixation de l’azote. Les études faites à la lumière, dans le mode de croissance préféré de ces bactéries (photosynthèse anaérobie), ont montré que la nitrogénase (enzyme responsable de la fixation du diazote) est sujet d’une régulation à trois niveaux: une régulation transcriptionnelle de NifA (protéine activatrice de la transcription des gènes nif), une régulation post-traductionnelle de l’activité de NifA envers l’activation de la transcription des autres gènes nif, et la régulation post-traductionnelle de l’activité de la nitrogénase quand les cellules sont soumises à un choc d’ammoniaque. Le système de régulation déjà décrit fait intervenir essentiellement une protéine membranaire, AmtB, et les deux protéines PII, GlnB et GlnK. Il est connu depuis long temps que la nitrogénase est aussi régulée quand une culture photosynthétique est exposée à la noirceur, mais jusqu’aujourd’hui, on ignore encore la nature des systèmes intervenants dans cette régulation. Ainsi, parmi les questions qui peuvent se poser: quelles sont les protéines qui interviennent dans l’inactivation de la nitrogénase lorsqu’une culture anaérobie est placée à la noirceur? Une analyse de plusieurs souches mutantes, amtB- , glnK- , glnB- et amtY- poussées dans différentes conditions de limitation en azote, serait une façon pour répondre à ces interrogations. Alors, avec le suivi de l’activité de la nitrogénase et le Western Blot, on a montré que le choc de noirceur provoquerait un "Switch-off" de l’activité de la nitrogénase dû à une ADP-ribosylation de la protéine Fe. On a réussit aussi à montrer que ii tout le système déjà impliqué dans la réponse à un choc d’ammoniaque, est également nécessaire pour une réponse à un manque de lumière ou d’énergie (les protéines AmtB, GlnK, GlnB, DraG, DraT et AmtY). Or, Rhodobacter capsulatus est capable de fixer l’azote et de croitre aussi bien dans la micro-aérobie à la noirceur que dans des conditions de photosynthèse anaérobies, mais jusqu'à maintenant sa régulation dans l’obscurité est peu étudiée. L’étude de la fixation d’azote à la noirceur nous a permis de montrer que le complexe membranaire Rnf n’est pas nécessaire à la croissance de R. capsulatus dans de telles conditions. Dans le but de développer une façon d’étudier la régulation de la croissance dans ce mode, on a tout d’abord essayé d’identifier les conditions opératoires (O2, [NH4 + ]) permettant à R. capsulatus de fixer l’azote en microaérobie. L’optimisation de cette croissance a montré que la concentration optimale d’oxygène nécessaire est de 10% mélangé avec de l’azote. / The atmosphere of the Earth is very rich in nitrogen (N2). However, diatomic nitrogen is very stable and therefore unusable by the majority of life forms even though it is necessary for the synthesis of a variety of organic compounds. Only diazotrophic procaryotes are capable of using N2 as nitrogen source. Their nitrogen fixation allows the production of aminated compounds from atmospheric nitrogen (78 %). However, this process is very complex and requires the biosynthesis of about twenty proteins and the consumption of a lot of energy (16 molecules of ATP per molecule of N2 fixed), thus necessitating its tight regulation. The purple non-sulfur photosynthetic bacteria are known for their ability to carry out nitrogen fixation. Studies conducted in the light, the preferred mode of growth of these bacteria (anaerobic photosynthetic), have shown that nitrogenase (the enzyme responsible for dinitrogen fixation) is subject to regulation at three levels: transcriptional regulation of NifA (activator protein for the transcription of nif genes), posttranslational regulation of the activity of NifA to activate nif gene transcription, and posttranslational regulation of nitrogenase activity when cells are subjected to an ammonium shock. The control system already described involves essentially a membrane protein, AmtB and both PII proteins, GlnK and GlnB. It has long been known that nitrogenase is regulated when light is suddenly removed from a culture, but until now it is unclear whether these systems are also involved in the regulation of nitrogen fixation in dark. Thus, one outstanding question is what are the proteins involved in the inactivation of nitrogenase when a light-grown culture is placed in the dark? An analysis of several mutant strains; amtB-, glnK-, glnB-, and amtY- under different conditions of nitrogen deficiency was used to address this question. Using measurements of nitrogenase activity and Fe protein modification by Western blotting, we were able to show that darkness causes a "switch-off” of nitrogenase due to ADP- ribosylation of Fe protein. Thus, the system that has already been described as involved in the response to a lack of ammonia, is also required for a response to a lack of light or energy (AmtB, GlnK, GlnB, DraG, and DraT, and AmtY). However, Rhodobacter capsulatus is also able to fix nitrogen and grow micro-aerobically in the dark as well as photosynthetically under anaerobic conditions, but so far its regulation in the dark has been little studied. The study of nitrogen fixation in the dark allowed us to show that the Rnf membrane complex is not required for growth of R. capsulatus in such conditions. In order to develop a way to study its regulation during this growth mode, we have attempted to identify the operating conditions (O2, [NH4+]), allowing R. capsulatus to fix nitrogen micro-aerobically. The optimization of this conditions has shown that the optimal concentration of oxygen required is 10% mixed with nitrogen.
3

Maurice Duplessis : mises en récit d'un personnage historique

Berthelot, Pierre 05 1900 (has links)
Comme son titre l’indique, ce mémoire a pour objet une réflexion sur la mise en récit d’un personnage historique. Afin d’explorer l’évolution des points de vue sur un personnage historique (Maurice Duplessis) et l’époque à laquelle il est rattaché dans la mémoire collective (la Grande noirceur), ce travail s’appuiera sur la théorie de la biographie de François Dosse (Le pari biographique) ainsi que sur les mises en récit et le discours de trois auteurs différents. La première biographie analysée sera Maurice Duplessis et son temps, récit historique romancé et admiratif d’une figure quasi royale, écrit par Robert Rumilly, historien royaliste et disciple de Charles Maurras. La seconde biographie analysée sera Duplessis, le grand récit épique d’un conservateur illustre, écrit par Conrad Black, homme d’affaires et historien de sensibilité conservatrice. Finalement, la troisième biographie analysée sera la série télévisée Duplessis, écrite par Denys Arcand, présentant Duplessis comme l’incarnation tragique et séguiniste de la nation canadienne-française, lucide et désabusé par rapport à l’impasse historico-politique de son peuple. Pour compléter l’analyse, ce mémoire s’appuiera aussi sur la théorie de l’identité narrative de Paul Ricœur dans Soi-même comme un autre, Temps et récit et La mémoire, l’histoire, l’oubli, et sur la mise en récit et l’écriture même de l’histoire étudiée par Michel de Certeau dans L’écriture de l’histoire. À travers l’analyse de ces trois biographies, ce mémoire tentera de montrer l’évolution du rapport à la mémoire collective et les distinctions entre l’Histoire et la fiction. / As the title indicates, the purpose of this thesis is to reflect on the narrativization of an historical figure. In order to analyse the evolution of the way we perceive an historical figure (Maurice Duplessis) and the time period to which he is commonly associated (the Great Darkness), this thesis will draw upon François Dosse’s theory on biography (Le pari biographique) and the narratives of three different authors. First, we will take a close look at Maurice Duplessis et son temps, the story of a king-like figure recounted in an admiring fashion, written by royalist historian and Charles Maurras disciple Robert Rumilly. Secondly, we will examine Duplessis, the great epic tale of an illustrious conservative’s battles, written by conservative businessman and historian Conrad Black. Lastly, we will analyse Duplessis, the TV drama written by Denys Arcand, a disciple of Quebec nationalist historian Maurice Séguin, presenting Maurice Duplessis as the tragic incarnation of the French-Canadian nation, cynical yet conscious of his people’s impossible historical and political destiny. To complete the analysis, this thesis will also rely on Paul Ricoeur’s theory on narrative identity, notably discussed in Oneself as Another, Time and Narrative and Memory, History, Forgetting, as well as Michel de Certeau’s theory on writing and narrativization of history in The Writing of History. Through the analysis of these biographies, this thesis will aim to show the evolution of the relationship to the collective memory as well as what distinguishes History from Fiction.

Page generated in 0.0323 seconds