• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Arctic Ocean ambient noise.

Shepard, George Woods January 1979 (has links)
Thesis (Ocean E)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 178-180. / Ocean E
2

Advanced Trailing Edge Blowing Concepts for Fan Noise Control: Experimental Validation

Halasz, Christopher 04 August 2005 (has links)
This thesis documents trailing edge blowing research performed to reduce rotor / stator interaction noise in turbofan engines. The existing technique of filling every velocity deficit requires a large amount of air and is therefore impractical. The purpose of this research is to investigate new blowing configurations in order to achieve noise reduction with lesser amounts of air. Using the new configurations air is not injected into every fan blade, but is instead varied circumferentially. For example, blowing air may be applied to alternating fan blades. This type of blowing configuration both reduces the amount of air used and changes the spectral shape of the tonal interaction noise. The original tones at the blade passing frequency and its harmonics are reduced and new tones are introduced between them. This change in the tonal spectral shape increases the performance of acoustic liners used in conjunction with trailing edge blowing. This thesis presents numerical predictions performed to estimate the sound power reductions due to these concepts, as well as experimental results taken on the ANCF rig at NASA Glenn for validation purposes. The results show that the new concepts are successful in increasing the efficiency of trailing edge blowing. / Master of Science
3

Noise spectra comparison among wind turbinesand its implications to human perception.

Boti, Ismael January 2014 (has links)
The noise coming from wind power development can be an environmental impact forthe surrounding communities. It is well known that the main wind turbine noise iscaused by the movement of the turbine wings through the air. However, there areuncertainties about the importance of machinery sounds and possible variations amongwind turbines. A high resolution acquisition system was used to perform a fieldexperiment comparison of the noise spectra from some wind turbines at Laholm(Sweden). The results have shown different band spectra peaks associated to machinerysounds among wind turbines from the same model and also from those of differentmanufactures. Maintenance conditions of these wind turbines could explain thedifferences in intensity and frequency locations of the band spectra peaks found. Inorder to know the importance for human audition of these peaks, listening test or doseresponsestudies would be needed to provide relevant information in this regard. Themethodology developed in this study is suggested to be useful for identifying certainmachinery failures which could corrupt the noise sounds emitted at certain wind turbinelocations.
4

Experimental Studies on Acoustic Noise Emitted by Induction Motor Drives Operated with Different Pulse-Width Modulation Schemes

Binoj Kumar, A C January 2015 (has links) (PDF)
Voltage source inverter (VSI) fed induction motors are increasingly used in industrial and transportation applications as variable speed drives. However, VSIs generate non-sinusoidal voltages and hence result in harmonic distortion in motor current, motor heating, torque pulsations and increased acoustic noise. Most of these undesirable effects can be reduced by increasing the switching frequency of the inverter. This is not necessarily true for acoustic noise. Acoustic noise does not decrease monotonically with increase in switching frequency since the noise emitted depends on the proximity of harmonic frequencies to the motor resonant frequencies. Also there are practical limitations on the inverter switching frequency on account of device rating and losses. The switching frequency of many inverters often falls in the range 2 kHz - 6 kHz where the human ear is highly sensitive. Hence, the acoustic noise emission from the motor drive is of utmost important. Further, the acoustic noise emitted by the motor drive is known to depend on the waveform quality of the voltage applied. Hence, the acoustic performance varies with the pulse width modulation (PWM) technique used to modulate the inverter, even at the same modulation index. Therefore a comprehensive study on the acoustic noise aspects of induction motor drive is required. The acoustic noise study of the motor drive poses multifaceted challenges. A simple motor model is sufficient for calculation of total harmonic distortion (THD). A more detailed model is required for torque pulsation studies. But the motor acoustic noise is affected by many other factors such as stator winding distribution, space harmonics, geometry of stator and rotor slots, motor irregularities, structural issues controlling the resonant frequency and environmental factors. Hence an accurate model for acoustic noise would have to be very detailed and would span different domains such as electromagnetic fields, structural engineering, vibration and acoustics. Motor designers employ such detailed models along with details of the materials used and geometry to predict the acoustic noise that would be emitted by a motor and also to design a low-noise motor. However such detailed motor model for acoustic noise purposes and the necessary material and constructional details of the motor are usually not available to the user. Also, certain factors influencing the acoustic noise change due to wear and tear during the operational life of the motor. Hence this thesis takes up an experimental approach to study the acoustic noise performance of an inverter-fed induction motor at any stage of its operating life. A 10 kVA insulated gate bipolar transistor (IGBT) based inverter is built to feed the induction motor; a 6 kW and 2.3 kW induction motors are used as experimental motors. A low-cost acoustic noise measurement system is also developed as per relevant standards for measurement and spectral analysis of the acoustic noise emitted. For each PWM scheme, the current and acoustic noise measurements are carried out extensively at different carrier frequencies over a range of fundamental frequencies. The main cause of acoustic noise of electromagnetic origin is the stator core vibration, which is caused by the interaction of air-gap fluxes produced by fundamental current and harmonic currents. In this thesis, an experimental procedure is suggested for the acoustic noise characterization of an induction motor inclusive of determination of resonant frequencies. Further, based on current and acoustic noise measurements, a vibration model is proposed for the stator structure. This model is used to predict the acoustic noise pertaining to time harmonic currents with reasonable accuracy. Literature on motor acoustic noise mainly focuses on sinusoidal PWM (SPWM), conventional space vector PWM (CSVPWM) and random PWM (RPWM). In this thesis, acoustic noise pertaining to two bus-clamping PWM (BCPWM) schemes and an advanced bus-clamping PWM (ABCPWM) scheme is investigated. BCPWM schemes are mainly used to reduce the switching loss of the inverter by clamping any of the three phases to DC rail for 120◦ duration of the fundamental cycle. Experimental results show that these BCPWM schemes reduce the amplitude of the tonal component of noise at the carrier frequency, compared to CSVPWM. Experimental results with ABCPWM show that the overall acoustic noise produced by the motor drive is reduced at low and medium speeds if the switching frequency is above 3 kHz. Certain spread in the frequency spectrum of noise is also seen with both BCPWM and ABCPWM. To spread the acoustic noise spectrum further, many variable-frequency PWM schemes have been suggested by researchers. But these schemes, by and large, increase the current total harmonic distortion (THD) compared to CSVPWM. Thus, a novel variable-frequency PWM (VFPWM) method is proposed, which offers reduced current THD in addition to uniformly spread noise spectrum. Experimental results also show spread in the acoustic noise spectrum and reduction in the dominant noise components with the proposed VFPWM. Also, the current THD is reduced at high speeds of the motor drive with the proposed method.

Page generated in 0.0464 seconds