Spelling suggestions: "subject:"oon life off light (NLOS)"" "subject:"oon life off might (NLOS)""
1 |
Collaborative Position Location for Wireless Networks in Harsh EnvironmentsJia, Tao 15 April 2010 (has links)
Position location has become one of the more important tasks for improving communication and networking performance for future commercial wireless systems. It is also the enabling technology for many control and sensing applications envisioned by the wireless sensor networks (WSN). Despite its meaningfulness and many algorithms being developed in the past several years, position location in harsh propagation environments remains to be a challenging issue, due mainly to the lack of sufficient infrastructure support and the prominent phenomenon of non-line-of-sight (NLOS) signal propagation.
Recently, adopting the concept of collaborative position location has attracted much research interest due to its potential in overcoming the abovementioned two difficulties. In this work, we approach collaborative position location from two different angles. Specifically, we investigate the optimal performance of collaborative position location, which serves as a theoretical performance benchmark. In addition, we developed a computationally efficient algorithm for collaborative position location and incorporated an effective NLOS mitigation method to improve its performance in NLOS-dense environments. Overall, our work provides insight into both theoretical and practical aspects of collaborative position location. / Ph. D.
|
2 |
Mobile Location Estimation Using Genetic Algorithm and Clustering Technique for NLOS EnvironmentsHung, Chung-Ching 10 September 2007 (has links)
For the mass demands of personalized security services, such as tracking, supervision, and emergent rescue, the location technologies of mobile communication have drawn much attention of the governments, academia, and industries around the world. However, existing location methods cannot satisfy the requirements of low cost and high accuracy. We hypothesized that a new mobile location algorithm based on the current GSM system will effectively improve user satisfaction. In this study, a prototype system will be developed, implemented, and experimented by integrating the useful information such as the geometry of the cell layout, and the related mobile positioning technologies. The intersection of the regions formed by the communication space of the base stations will be explored. Furthermore, the density-based clustering algorithm (DCA) and GA-based algorithm will be designed to analyze the intersection region and estimate the most possible location of a mobile phone. Simulation results show that the location error of the GA-based is less than 0.075 km for 67% of the time, and less than 0.15 km for 95% of the time. The results of the experiments satisfy the location accuracy demand of E-911.
|
3 |
Mobile Location Method Using Least Range and Clustering Techniques for NLOS EnvironmentsWang, Chien-chih 09 February 2007 (has links)
The technique of mobile location has become a popular research topic since the number of related applications for the location information is growing rapidly. The decision to make the location of mobile phones under the U.S. Federal Communications Commission (FCC) in 1996 is one of the driving forces to research and provide solutions to it. But, in wireless communication systems, non line of sight (NLOS) propagation is a key and difficult issue to improve mobile location estimation.
We propose an efficient location algorithm which can mitigate the influence of NLOS error. First, based on the geometric relationship between known positions of the base stations, the theorem of ¡§Fermat Point¡¨ is utilized to collect the candidate positions (CPs) of the mobile station. Then, a set of weighting parameters are computed using a density-based clustering method. Finally, the location of mobile station is estimated by solving the optimal solution of the weighted objective function.
Different distributions of NLOS error models are used to evaluate the performance of this method. Simulation results show that the performance of the least range measure (LRM) algorithm is slightly better than density-based clustering algorithm (DCA), and superior to the range based linear lines of position algorithm (LLOP) and range scaling algorithm (RSA) on location accuracy under different NLOS environments. The simulation results also satisfy the location accuracy demand of Enhanced 911 (E-911).
|
4 |
A Coverage Area Estimation Model for Interference-Limited Non-Line-of-Sight Point-to-Multipoint Fixed Broadband Wireless Communication SystemsRamaSarma, Vaidyanathan 04 October 2002 (has links)
First-generation, line-of-sight (LOS) fixed broadband wireless access techniques have been around for several years. However, services based on this technology have been limited in scope to service areas where transceivers can communicate with their base stations, unimpeded by trees, buildings and other obstructions. This limitation has serious consequences in that the system can deliver only 50% to 70% coverage within a given cell radius, thus affecting earned revenue. Next generation broadband fixed wireless access techniques are aimed at achieving a coverage area greater than 90%. To achieve this target, these techniques must be based on a point-to-multipoint (PMP) cellular architecture with low base station antennas, thus possessing the ability to operate in true non-line-of-sight (NLOS) conditions. A possible limiting factor for these systems is link degradation due to interference.
This thesis presents a new model to estimate the levels of co-channel interference for such systems operating within the 3.5 GHz multichannel multipoint distribution service (MMDS) band. The model is site-specific in that it uses statistical building/roof height distribution parameters obtained from practically modeling several metropolitan cities in the U.S. using geographic information system (GIS) tools. This helps to obtain a realistic estimate and helps analyze the tradeoff between cell radius and modulation complexity. Together, these allow the system designer to decide on an optimal location for placement of customer premises equipment (CPE) within a given cell area. / Master of Science
|
5 |
Statistical Analysis of Geolocation Fundamentals Using Stochastic GeometryO'Lone, Christopher Edward 22 January 2021 (has links)
The past two decades have seen a surge in the number of applications requiring precise positioning data. Modern cellular networks offer many services based on the user's location, such as emergency services (e.g., E911), and emerging wireless sensor networks are being used in applications spanning environmental monitoring, precision agriculture, warehouse and manufacturing logistics, and traffic monitoring, just to name a few. In these sensor networks in particular, obtaining precise positioning data of the sensors gives vital context to the measurements being reported. While the Global Positioning System (GPS) has traditionally been used to obtain this positioning data, the deployment locations of these cellular and sensor networks in GPS-constrained environments (e.g., cities, indoors, etc.), along with the need for reliable positioning, requires a localization scheme that does not rely solely on GPS. This has lead to localization being performed entirely by the network infrastructure itself, or by the network infrastructure aided, in part, by GPS.
In the literature, benchmarking localization performance in these networks has traditionally been done in a deterministic manner. That is, for a fixed setup of anchors (nodes with known location) and a target (a node with unknown location) a commonly used benchmark for localization error, such as the Cramer-Rao lower bound (CRLB), can be calculated for a given localization strategy, e.g., time-of-arrival (TOA), angle-of-arrival (AOA), etc. While this CRLB calculation provides excellent insight into expected localization performance, its traditional treatment as a deterministic value for a specific setup is limited.
Rather than trying to gain insight into a specific setup, network designers are more often interested in aggregate localization error statistics within the network as a whole. Questions such as: "What percentage of the time is localization error less than x meters in the network?" are commonplace. In order to answer these types of questions, network designers often turn to simulations; however, these come with many drawbacks, such as lengthy execution times and the inability to provide fundamental insights due to their inherent ``block box'' nature. Thus, this dissertation presents the first analytical solution with which to answer these questions. By leveraging tools from stochastic geometry, anchor positions and potential target positions can be modeled by Poisson point processes (PPPs). This allows for the CRLB of position error to be characterized over all setups of anchor positions and potential target positions realizable within the network. This leads to a distribution of the CRLB, which can completely characterize localization error experienced by a target within the network, and can consequently be used to answer questions regarding network-wide localization performance. The particular CRLB distribution derived in this dissertation is for fourth-generation (4G) and fifth-generation (5G) sub-6GHz networks employing a TOA localization strategy.
Recognizing the tremendous potential that stochastic geometry has in gaining new insight into localization, this dissertation continues by further exploring the union of these two fields. First, the concept of localizability, which is the probability that a mobile is able to obtain an unambiguous position estimate, is explored in a 5G, millimeter wave (mm-wave) framework. In this framework, unambiguous single-anchor localization is possible with either a line-of-sight (LOS) path between the anchor and mobile or, if blocked, then via at least two NLOS paths. Thus, for a single anchor-mobile pair in a 5G, mm-wave network, this dissertation derives the mobile's localizability over all environmental realizations this anchor-mobile pair is likely to experience in the network. This is done by: (1) utilizing the Boolean model from stochastic geometry, which statistically characterizes the random positions, sizes, and orientations of reflectors (e.g., buildings) in the environment, (2) considering the availability of first-order (i.e., single-bounce) reflections as well as the LOS path, and (3) considering the possibility that reflectors can either facilitate or block reflections. In addition to the derivation of the mobile's localizability, this analysis also reveals that unambiguous localization, via reflected NLOS signals exclusively, is a relatively small contributor to the mobile's overall localizability.
Lastly, using this first-order reflection framework developed under the Boolean model, this dissertation then statistically characterizes the NLOS bias present on range measurements. This NLOS bias is a common phenomenon that arises when trying to measure the distance between two nodes via the time delay of a transmitted signal. If the LOS path is blocked, then the extra distance that the signal must travel to the receiver, in excess of the LOS path, is termed the NLOS bias. Due to the random nature of the propagation environment, the NLOS bias is a random variable, and as such, its distribution is sought. As before, assuming NLOS propagation is due to first-order reflections, and that reflectors can either facilitate or block reflections, the distribution of the path length (i.e., absolute time delay) of the first-arriving multipath component (MPC) is derived. This result is then used to obtain the first NLOS bias distribution in the localization literature that is based on the absolute delay of the first-arriving MPC for outdoor time-of-flight (TOF) range measurements. This distribution is shown to match exceptionally well with commonly assumed gamma and exponential NLOS bias models in the literature, which were only attained previously through heuristic or indirect methods. Finally, the flexibility of this analytical framework is utilized by further deriving the angle-of-arrival (AOA) distribution of the first-arriving MPC at the mobile. This distribution gives novel insight into how environmental obstacles affect the AOA and also represents the first AOA distribution, of any kind, derived under the Boolean model.
In summary, this dissertation uses the analytical tools offered by stochastic geometry to gain new insights into localization metrics by performing analyses over the entire ensemble of infrastructure or environmental realizations that a target is likely to experience in a network. / Doctor of Philosophy / The past two decades have seen a surge in the number of applications requiring precise positioning data. Modern cellular networks offer many services based on the user's location, such as emergency services (e.g., E911), and emerging wireless sensor networks are being used in applications spanning environmental monitoring, precision agriculture, warehouse and manufacturing logistics, and traffic monitoring, just to name a few. In these sensor networks in particular, obtaining precise positioning data of the sensors gives vital context to the measurements being reported. While the Global Positioning System (GPS) has traditionally been used to obtain this positioning data, the deployment locations of these cellular and sensor networks in GPS-constrained environments (e.g., cities, indoors, etc.), along with the need for reliable positioning, requires a localization scheme that does not rely solely on GPS. This has lead to localization being performed entirely by the network infrastructure itself, or by the network infrastructure aided, in part, by GPS.
When speaking in terms of localization, the network infrastructure consists of what are called anchors, which are simply nodes (points) with a known location. These can be base stations, WiFi access points, or designated sensor nodes, depending on the network. In trying to determine the position of a target (i.e., a user, or a mobile), various measurements can be made between this target and the anchor nodes in close proximity. These measurements are typically distance (range) measurements or angle (bearing) measurements. Localization algorithms then process these measurements to obtain an estimate of the target position.
The performance of a given localization algorithm (i.e., estimator) is typically evaluated by examining the distance, in meters, between the position estimates it produces vs. the actual (true) target position. This is called the positioning error of the estimator. There are various benchmarks that bound the best (lowest) error that these algorithms can hope to achieve; however, these benchmarks depend on the particular setup of anchors and the target. The benchmark of localization error considered in this dissertation is the Cramer-Rao lower bound (CRLB). To determine how this benchmark of localization error behaves over the entire network, all of the various setups of anchors and the target that would arise in the network must be considered. Thus, this dissertation uses a field of statistics called stochastic geometry} to model all of these random placements of anchors and the target, which represent all the setups that can be experienced in the network. Under this model, the probability distribution of this localization error benchmark across the entirety of the network is then derived. This distribution allows network designers to examine localization performance in the network as a whole, rather than just for a specific setup, and allows one to obtain answers to questions such as: "What percentage of the time is localization error less than x meters in the network?"
Next, this dissertation examines a concept called localizability, which is the probability that a target can obtain a unique position estimate. Oftentimes localization algorithms can produce position estimates that congregate around different potential target positions, and thus, it is important to know when algorithms will produce estimates that congregate around a unique (single) potential target position; hence the importance of localizability. In fifth generation (5G), millimeter wave (mm-wave) networks, only one anchor is needed to produce a unique target position estimate if the line-of-sight (LOS) path between the anchor and the target is unimpeded. If the LOS path is impeded, then a unique target position can still be obtained if two or more non-line-of-sight (NLOS) paths are available. Thus, over all possible environmental realizations likely to be experienced in the network by this single anchor-mobile pair, this dissertation derives the mobile's localizability, or in this case, the probability the LOS path or at least two NLOS paths are available. This is done by utilizing another analytical tool from stochastic geometry known as the Boolean model, which statistically characterizes the random positions, sizes, and orientations of reflectors (e.g., buildings) in the environment. Under this model, considering the availability of first-order (i.e., single-bounce) reflections as well as the LOS path, and considering the possibility that reflectors can either facilitate or block reflections, the mobile's localizability is derived. This result reveals the roles that the LOS path and the NLOS paths play in obtaining a unique position estimate of the target.
Using this first-order reflection framework developed under the Boolean model, this dissertation then statistically characterizes the NLOS bias present on range measurements. This NLOS bias is a common phenomenon that arises when trying to measure the distance between two nodes via the time-of-flight (TOF) of a transmitted signal. If the LOS path is blocked, then the extra distance that the signal must travel to the receiver, in excess of the LOS path, is termed the NLOS bias. As before, assuming NLOS propagation is due to first-order reflections and that reflectors can either facilitate or block reflections, the distribution of the path length (i.e., absolute time delay) of the first-arriving multipath component (MPC) (or first-arriving ``reflection path'') is derived. This result is then used to obtain the first NLOS bias distribution in the localization literature that is based on the absolute delay of the first-arriving MPC for outdoor TOF range measurements. This distribution is shown to match exceptionally well with commonly assumed NLOS bias distributions in the literature, which were only attained previously through heuristic or indirect methods. Finally, the flexibility of this analytical framework is utilized by further deriving angle-of-arrival (AOA) distribution of the first-arriving MPC at the mobile. This distribution yields the probability that, for a specific angle, the first-arriving reflection path arrives at the mobile at this angle. This distribution gives novel insight into how environmental obstacles affect the AOA and also represents the first AOA distribution, of any kind, derived under the Boolean model.
In summary, this dissertation uses the analytical tools offered by stochastic geometry to gain new insights into localization metrics by performing analyses over all of the possible infrastructure or environmental realizations that a target is likely to experience in a network.
|
6 |
TOA-Based Robust Wireless Geolocation and Cramér-Rao Lower Bound Analysis in Harsh LOS/NLOS EnvironmentsYin, Feng, Fritsche, Carsten, Gustafsson, Fredrik, Zoubir, Abdelhak M January 2013 (has links)
We consider time-of-arrival based robust geolocation in harsh line-of-sight/non-line-of-sight environments. Herein, we assume the probability density function (PDF) of the measurement error to be completely unknown and develop an iterative algorithm for robust position estimation. The iterative algorithm alternates between a PDF estimation step, which approximates the exact measurement error PDF (albeit unknown) under the current parameter estimate via adaptive kernel density estimation, and a parameter estimation step, which resolves a position estimate from the approximate log-likelihood function via a quasi-Newton method. Unless the convergence condition is satisfied, the resolved position estimate is then used to refine the PDF estimation in the next iteration. We also present the best achievable geolocation accuracy in terms of the Cramér-Rao lower bound. Various simulations have been conducted in both real-world and simulated scenarios. When the number of received range measurements is large, the new proposed position estimator attains the performance of the maximum likelihood estimator (MLE). When the number of range measurements is small, it deviates from the MLE, but still outperforms several salient robust estimators in terms of geolocation accuracy, which comes at the cost of higher computational complexity.
|
7 |
5G Positioning using Machine LearningMalmström, Magnus January 2018 (has links)
Positioning is recognized as an important feature of fifth generation (\abbrFiveG) cellular networks due to the massive number of commercial use cases that would benefit from access to position information. Radio based positioning has always been a challenging task in urban canyons where buildings block and reflect the radio signal, causing multipath propagation and non-line-of-sight (NLOS) signal conditions. One approach to handle NLOS is to use data-driven methods such as machine learning algorithms on beam-based data, where a training data set with positioned measurements are used to train a model that transforms measurements to position estimates. The work is based on position and radio measurement data from a 5G testbed. The transmission point (TP) in the testbed has an antenna that have beams in both horizontal and vertical layers. The measurements are the beam reference signal received power (BRSRP) from the beams and the direction of departure (DOD) from the set of beams with the highest received signal strength (RSS). For modelling of the relation between measurements and positions, two non-linear models has been considered, these are neural network and random forest models. These non-linear models will be referred to as machine learning algorithms. The machine learning algorithms are able to position the user equipment (UE) in NLOS regions with a horizontal positioning error of less than 10 meters in 80 percent of the test cases. The results also show that it is essential to combine information from beams from the different vertical antenna layers to be able to perform positioning with high accuracy during NLOS conditions. Further, the tests show that the data must be separated into line-of-sight (LOS) and NLOS data before the training of the machine learning algorithms to achieve good positioning performance under both LOS and NLOS conditions. Therefore, a generalized likelihood ratio test (GLRT) to classify data originating from LOS or NLOS conditions, has been developed. The probability of detection of the algorithms is about 90\% when the probability of false alarm is only 5%. To boost the position accuracy of from the machine learning algorithms, a Kalman filter have been developed with the output from the machine learning algorithms as input. Results show that this can improve the position accuracy in NLOS scenarios significantly. / Radiobasserad positionering av användarenheter är en viktig applikation i femte generationens (5G) radionätverk, som mycket tid och pengar läggs på för att utveckla och förbättra. Ett exempel på tillämpningsområde är positionering av nödsamtal, där ska användarenheten kunna positioneras med en noggrannhet på ett tiotal meter. Radio basserad positionering har alltid varit utmanande i stadsmiljöer där höga hus skymmer och reflekterar signalen mellan användarenheten och basstationen. En ide att positionera i dessa utmanande stadsmiljöer är att använda datadrivna modeller tränade av algoritmer baserat på positionerat testdata – så kallade maskininlärningsalgoritmer. I detta arbete har två icke-linjära modeller - neurala nätverk och random forest – bli implementerade och utvärderade för positionering av användarenheter där signalen från basstationen är skymd.% Dessa modeller refereras som maskininlärningsalgoritmer. Utvärderingen har gjorts på data insamlad av Ericsson från ett 5G-prototypnätverk lokaliserat i Kista, Stockholm. Antennen i den basstation som används har 48 lober vilka ligger i fem olika vertikala lager. Insignal och målvärdena till maskininlärningsalgoritmerna är signals styrkan för varje stråle (BRSRP), respektive givna GPS-positioner för användarenheten. Resultatet visar att med dessa maskininlärningsalgoritmer positioneras användarenheten med en osäkerhet mindre än tio meter i 80 procent av försöksfallen. För att kunna uppnå dessa resultat är viktigt att kunna detektera om signalen mellan användarenheten och basstationen är skymd eller ej. För att göra det har ett statistiskt test blivit implementerat. Detektionssannolikhet för testet är över 90 procent, samtidigt som sannolikhet att få falskt alarm endast är ett fåtal procent.\newline \newline%För att minska osäkerheten i positioneringen har undersökningar gjorts där utsignalen från maskininlärningsalgoritmerna filtreras med ett Kalman-filter. Resultat från dessa undersökningar visar att Kalman-filtret kan förbättra presitionen för positioneringen märkvärt.
|
8 |
Propagation channel models for 5G mobile networks. Simulation and measurements of 5G propagation channel models for indoor and outdoor environments covering both LOS and NLOS ScenariosManan, Waqas January 2018 (has links)
At present, the current 4G systems provide a universal platform for broadband mobile services; however, mobile traffic is still growing at an unprecedented rate and the need for more sophisticated broadband services is pushing the limits on current standards to provide even tighter integration between wireless technologies and higher speeds. This has led to the need for a new generation of mobile communications: the so-called 5G. Although 5G systems are not expected to penetrate the market until 2020, the evolution towards 5G is widely accepted to be the logical convergence of internet services with existing mobile networking standards leading to the commonly used term “mobile internet” over heterogeneous networks, with several Gbits/s data rate and very high connectivity speeds. Therefore, to support highly increasing traffic capacity and high data rates, the next generation mobile network (5G) should extend the range of frequency spectrum for mobile communication that is yet to be identified by the ITU-R. The mm-wave spectrum is the key enabling feature of the next-generation cellular system, for which the propagation channel models need to be predicted to enhance the design guidance and the practicality of the whole design transceiver system.
The present work addresses the main concepts of the propagation channel behaviour using ray tracing software package for simulation and then results were tested and compared against practical analysis in a real-time environment. The characteristics of Indoor-Indoor (LOS and NLOS), and indoor-outdoor (NLOS) propagations channels are intensively investigated at four different frequencies; 5.8 GHz, 26GHz, 28GHz and 60GHz for vertical polarized directional, omnidirectional and isotropic antennas patterns. The computed data achieved from the 3-D Shooting and Bouncing Ray (SBR) Wireless Insite based on the effect of frequency dependent electrical properties of building materials. Ray tracing technique has been utilized to predict multipath propagation characteristics in mm-wave bands at different propagation environments. Finally, the received signal power and delay spread were computed for outdoor-outdoor complex propagation channel model at 26 GHz, 28 GHz and 60GHz frequencies and results were compared to the theoretical models.
|
Page generated in 0.0789 seconds