Spelling suggestions: "subject:"noncoherent"" "subject:"incoherent""
301 |
Estudo de propriedades quânticas dos feixes sonda e de bombeio na transparência induzida por laser / Study quantum properties of probe and pump beams in laser-induced transparency.Alzar, Carlos Leonardo Garrido 15 March 2002 (has links)
Este trabalho apresenta uma contribuição ao estudo das flutuações quânticas dos feixes sonda e de bombeio na condição de transparência induzida por laser. Com esse estudo conseguimos observar nas flutuações dos campos uma manifestação do caráter coerente da interação dos átomos com os feixes. Para alcançar nosso objetivo, derivamos a teoria do fenômeno da transparência induzida tratando ambos feixes dentro do formalismo quântico. Com tal formulação, encontramos que a condição de transparência induzida corresponde a um estado de equilíbrio dinâmico do sistema átomo - campo de bombeio - campo sonda onde, os átomos redistribuem os fótons entre os campos, correlacionando os mesmos e alterando, ao mesmo tempo, as propriedades estatísticas desses feixes. Utilizando dois critérios diferentes, mostrando que a correlação entre os feixes sonda e de bombeio é de natureza quântica, o que possibilita a aplicação desse sistema, por exemplo, na informação e computação quânticas. Os resultados experimentais obtidos confirmaram as previsões teóricas em relação às flutuações quânticas dos campos, e a existência de uma correlação entre eles. Trata-se da primeira investigação experimental de propriedades estatísticas dos campos em transparência induzida. A correlação de intensidade medida é o primeiro passo para a observação de emaranhamento entre feixes sonda e de bombeio na condiçào de transparência induzida. / In this work we presente a contribution to the study of quantum fluctuations of pump and probe filds in the Electromagnetically Induced Transparency (EIT) condition. We observed in the fields fluctuations evidence of the coherent character of the interaction between the atoms and the fields. To reach our purpose, the fields were treated quantum-mechanically in deriving the theory of the EIT phenomenon. Using this formulation, we concluded that the EIT condition corresponds to a state of dynamical equilibrium of the system atom pump field probe field, where the atoms redistribute the photons between both fields, correlating them and, at the same time, affecting their statistical properties. By means of two different criteria we showed that such a correlation is of quantum nature, making possible the application of this system in, for example, quantum information and quantum computation. The theoretical predictions were corroborated by our experimental results regarding the quantum fluctuations and the existence of a correlation between the pump and probe fields. This is the first experiment to investigate statistical properties of the fields in EIT. The intensity correlation measured is the first step towards the observation of entanglement between the fields.
|
302 |
Bi-fractional transforms in phase spaceAgyo, Sanfo David January 2016 (has links)
The displacement operator is related to the displaced parity operator through a two dimensional Fourier transform. Both operators are important operators in phase space and the trace of both with respect to the density operator gives the Wigner functions (displaced parity operator) and Weyl functions (displacement operator). The generalisation of the parity-displacement operator relationship considered here is called the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional displacement operators lead to the novel concept of bi-fractional coherent states. The generalisation from Fourier transform to fractional Fourier transform can be applied to other phase space functions. The case of the Wigner-Weyl function is considered and a generalisation is given, which is called the bi-fractional Wigner functions, H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to give the bi-fractional Q−functions and bi-fractional P−functions respectively. The generalisation is likewise applied to the Moyal star product and Berezin formalism for products of non-commutating operators. These are called the bi-fractional Moyal star product and bi-fractional Berezin formalism. Finally, analysis, applications and implications of these bi-fractional transforms to the Heisenberg uncertainty principle, photon statistics and future applications are discussed.
|
303 |
Estudo de propriedades quânticas dos feixes sonda e de bombeio na transparência induzida por laser / Study quantum properties of probe and pump beams in laser-induced transparency.Carlos Leonardo Garrido Alzar 15 March 2002 (has links)
Este trabalho apresenta uma contribuição ao estudo das flutuações quânticas dos feixes sonda e de bombeio na condição de transparência induzida por laser. Com esse estudo conseguimos observar nas flutuações dos campos uma manifestação do caráter coerente da interação dos átomos com os feixes. Para alcançar nosso objetivo, derivamos a teoria do fenômeno da transparência induzida tratando ambos feixes dentro do formalismo quântico. Com tal formulação, encontramos que a condição de transparência induzida corresponde a um estado de equilíbrio dinâmico do sistema átomo - campo de bombeio - campo sonda onde, os átomos redistribuem os fótons entre os campos, correlacionando os mesmos e alterando, ao mesmo tempo, as propriedades estatísticas desses feixes. Utilizando dois critérios diferentes, mostrando que a correlação entre os feixes sonda e de bombeio é de natureza quântica, o que possibilita a aplicação desse sistema, por exemplo, na informação e computação quânticas. Os resultados experimentais obtidos confirmaram as previsões teóricas em relação às flutuações quânticas dos campos, e a existência de uma correlação entre eles. Trata-se da primeira investigação experimental de propriedades estatísticas dos campos em transparência induzida. A correlação de intensidade medida é o primeiro passo para a observação de emaranhamento entre feixes sonda e de bombeio na condiçào de transparência induzida. / In this work we presente a contribution to the study of quantum fluctuations of pump and probe filds in the Electromagnetically Induced Transparency (EIT) condition. We observed in the fields fluctuations evidence of the coherent character of the interaction between the atoms and the fields. To reach our purpose, the fields were treated quantum-mechanically in deriving the theory of the EIT phenomenon. Using this formulation, we concluded that the EIT condition corresponds to a state of dynamical equilibrium of the system atom pump field probe field, where the atoms redistribute the photons between both fields, correlating them and, at the same time, affecting their statistical properties. By means of two different criteria we showed that such a correlation is of quantum nature, making possible the application of this system in, for example, quantum information and quantum computation. The theoretical predictions were corroborated by our experimental results regarding the quantum fluctuations and the existence of a correlation between the pump and probe fields. This is the first experiment to investigate statistical properties of the fields in EIT. The intensity correlation measured is the first step towards the observation of entanglement between the fields.
|
304 |
Laser à rayons X ultra-compact Raman XFEL / Ultra-compact X-ray free electron laser Raman XFELHadj-Bachir, Mokrane 15 December 2016 (has links)
L’obtention d’un Laser à Électrons Libres X (LEL-X) compact est un objectif majeur pour le développement des lasers. Plusieurs schémas prometteurs de LEL-X ont été proposés en utilisant à la fois l’accélération d’électrons dans les plasmas et des onduleurs optiques en régime Compton ou Compton inverse. Nous avons proposé un nouveau concept de LEL-X compact baptisé Raman XFEL, en combinant la physique des LEL en régime Compton, des lasers XUV conventionnels basés sur l’interaction laser plasma, et de l’optique non-linéaire. Nous étudions dans cette thèse les étapes préalables pour déclencher un effet laser à rayons X lors de l’interaction entre un paquet d’électrons libres relativistes et un réseau optique créé par l’interférence transverse de deux impulsions laser intenses. Dans cet objectif j’ai développé un code particulaire baptisé RELIC. Les études menées avec le code RELIC nous ont permis d’étudier la dynamique d’électrons relativistes et les processus d’injection du paquet d’électrons dans le réseau optique. Grâce à RELIC, nous avons distingué de nouveaux régimes d’interaction en fonction des paramètres du paquet d’électrons, ainsi que de la géométrie du réseau optique. Ces études ont été appliquées à l’amplification du rayonnement X et appuyées par des simulations PIC. RELIC a également permis de modéliser et d’analyser la première expérience réalisée en octobre 2015 sur l’installation laser ’Salle Jaune’ au Laboratoire d’Optique Appliquée (LOA). Cette première expérience a été une étape très importante pour la validation des modèles théoriques, et pour la réalisation future d’un laser à électrons libre X Raman. / The quest for a compact X-ray laser has long been a major objective of laser science. Several schemes using optical undulators are currently considered, in order to trigger the amplification of back scattered radiation, in Compton or inverse Compton regime. We have proposed a new concept of compact XFEL based on a combination between the physics of free electron lasers, of laser-plasma interactions, and of nonlinear optics. In this thesis, we study the necessary steps to trigger a X-ray laser during the interaction between a free relativistic electron bunch and an optical lattice created by the interference of two intense transverse laser pulses. For this purpose I developed a particular tracking code dubbed RELIC. RELIC allowed us to study the dynamics and injection process of a bunch of relativistic electrons into the optical lattice. Thanks to RELIC, we distinguished several interaction regimes depending on the relativistic electron bunch parameters, and on those of the optical lattice and its geometry. These studies are applied to the X ray amplification and supported by PIC simulations. RELIC also allowed us to model and analyze the first experiment conducted in october 2015 on the ”Salle Jaune” laser facility at LOA. This first experiment was very important to validate our theoretical models, and should prove to be an essential milestone for the development of a Raman X-ray free electron laser.
|
305 |
Bi-fractional transforms in phase spaceAgyo, Sanfo D. January 2016 (has links)
The displacement operator is related to the displaced parity operator through a two dimensional
Fourier transform. Both operators are important operators in phase space
and the trace of both with respect to the density operator gives the Wigner functions
(displaced parity operator) and Weyl functions (displacement operator). The generalisation
of the parity-displacement operator relationship considered here is called
the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional
displacement operators lead to the novel concept of bi-fractional coherent states.
The generalisation from Fourier transform to fractional Fourier transform can be
applied to other phase space functions. The case of the Wigner-Weyl function is considered
and a generalisation is given, which is called the bi-fractional Wigner functions,
H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to
give the bi-fractional Q−functions and bi-fractional P−functions respectively. The
generalisation is likewise applied to the Moyal star product and Berezin formalism for
products of non-commutating operators. These are called the bi-fractional Moyal star
product and bi-fractional Berezin formalism.
Finally, analysis, applications and implications of these bi-fractional transforms
to the Heisenberg uncertainty principle, photon statistics and future applications are
discussed.
|
306 |
Détection Optique Homodyne: application à la cryptographie quantiqueXu, Qing 28 April 2009 (has links) (PDF)
Les réseaux et systèmes de télécommunications mondiaux fondent aujourd'hui leur confidentialité sur la cryptographie classique, qui repose sur des hypothèses mathématiques fragiles. La distribution quantique de clef (QKD) est aujourd'hui la seule façon connue pour distribuer des clefs avec une sécurité inconditionnelle. Ce travail de thèse contribue à combler de manière pluridisciplinaire et polyvalente le gap entre les limites physiques fondamentales et l'implémentation expérimentale, en termes de vitesse, fiabilité et robustesse. Dans un premier temps, nous avons donc proposé une implémentation du protocole BB84 utilisant les états de phase cohérents. Le récepteur homodyne a été conçu de manière à compenser les fluctuations de phase et de polarisation dans les interféromètres, ainsi que dans le reste du canal de propagation. Ensuite, nous avons mis en place un dispositif expérimental de système QKD à la longueur d'onde 1550 nm, avec une modulation QPSK fonctionnant avec un trajet et un sens de parcours uniques, dans une fibre optique mono-mode. Les deux schémas de détection: le comptage de photons (PC) et la détection homodyne équilibrée (BHD) ont été mis en œuvre. Enfin, nous avons effectué des comparaisons théoriques et expérimentales de ces deux récepteurs. Le récepteur BHD a été élaboré avec une décision à double seuil. La mise en œuvre d'un tel processus accepte des mesures non-conclusives, et réduit l'efficacité de génération des clés, mais reste encore bien meilleur que celle des PCs à 1550 nm. Nous avons également prouvé que ce système est robust sous la plupart des attaques potentielles.
|
307 |
Nonbinary-LDPC-Coded Modulation Schemes for High-Speed Optical Communication NetworksArabaci, Murat January 2010 (has links)
IEEE has recently finished its ratification of the IEEE Standard 802.3ba in June 2010 which set the target Ethernet speed as 100 Gbps. The studies on the future trends of the ever-increasing demands for higher speed optical fiber communications show that there is no sign of decline in the demand. Constantly increasing internet traffic and the bandwidth-hungry multimedia services like HDTV, YouTube, voice-over-IP, etc. can be shown as the main driving forces. Indeed, the discussions over the future upgrades on the Ethernet speeds have already been initiated. It is predicted that the next upgrade will enable 400 Gbps Ethernet and the one after will be toward enabling the astounding 1 Tbps Ethernet.Although such high and ultra high transmission speeds are unprecedented over any transmission medium, the bottlenecks for achieving them over the optical fiber remains to be fundamental. At such high operating symbol rates, the signal impairments due to inter- and intra-channel fiber nonlinearities and polarization mode dispersion get exacerbated to the levels that cripple the high-fidelity communication over optical fibers. Therefore, efforts should be exerted to provide solutions that not only answer the need for high-speed transmission but also maintain low operating symbol rates.In this dissertation, we contribute to these efforts by proposing nonbinary-LDPC-coded modulation (NB-LDPC-CM) schemes as enabling technologies that can meet both the aforementioned goals. We show that our proposed NB-LDPC-CM schemes can outperform their prior-art, binary counterparts called bit-interleaved coded modulation (BI-LDPC-CM) schemes while attaining the same aggregate bit rates at a lower complexity and latency. We provide comprehensive analysis on the computational complexity of both schemes to justify our claims with solid evidence. We also compare the performances of both schemes by using amplified spontaneous emission (ASE) noise dominated optical fiber transmission and short to medium haul optical fiber transmission scenarios. Both applications show outstanding performances of NB-LDPC-CM schemes over the prior-art BI-LDPC-CM schemes with increasing gaps in coding gain as the transmission speeds increase. Furthermore, we present how a rate-adaptive NB-LDPC-CM can be employed to fully utilize the resources of a long haul optical transport network throughout its service time.
|
308 |
Polarization Ray TracingYun, Garam January 2011 (has links)
A three-by-three polarization ray tracing matrix method is developed to calculate the polarization transformations associated with ray paths through optical systems. The relationship between the three-by-three polarization ray tracing matrix P method and the Jones calculus is shown in Chapter 2. The diattenuation, polarization dependent transmittance, is calculated via a singular value decomposition of the P matrix and presented in Chapter 3. In Chapter 4 the concept of retardance is critically analyzed for ray paths through optical systems. Algorithms are presented to separate the effects of retardance from geometric transformations. The parallel transport of vectors is associated with non-polarizing propagation through an optical system. A parallel transport matrix Q establishes a proper relationship between sets of local coordinates along the ray path, a sequence of ray segments. The proper retardance is calculated by removing this geometric transformation from the three-by-three polarization ray trace matrix. Polarization aberration is wavelength and spatial dependent polarization change that occurs as wavefrontspropagate through an optical system. Diattenuation and retardance of interfaces and anisotropic elements are common sources of polarizationaberrations. Two representations of polarization aberrationusing the Jones pupil and a polarization ray tracing matrix pupil, are presentedin Chapter 5. In Chapter 6 a new class of aberration, skew aberration is defined, as a component of polarization aberration. Skew aberration is an intrinsic rotation of polarization states due to the geometric transformation of local coordinates; skew aberration occurs independent of coatings and interface polarization. Skew aberration in a radially symmetric system primarily has the form of a tilt plus circular retardance coma aberration. Skew aberration causes an undesired polarization distribution in the exit pupil. A principal retardance is often defined within (-π, + π] range. In Chapter 7 an algorithm which calculates the principal retardance, horizontal retardance component, 45° retardance component, and circular retardance component for given retarder Jones matrices is presented. A concept of retarder space is introduced to understand apparent discontinuities in phase unwrapped retardance. Dispersion properties of retarders for polychromatic light is used to phase unwrap the principal retardance. Homogeneous and inhomogeneous compound retarder systems are analyzed and examples of multi-order retardance are calculated for thick birefringent plates. Mathematical description of the polarization properties of light and incoherent addition of light is presented in Chapter 8, using a coherence matrix. A three-by-three-by-three-by-three polarization ray tracing tensor method is defined in order to ray trace incoherent light through optical systems with depolarizing surfaces. The polarization ray tracing tensor relates the incident light’s three-by-three coherence matrix to the exiting light’s three-by-three coherence matrix. This tensor method is applicable to illumination systems and polarized stray light calculations where rays at an imaging surface pixel have optical path lengths which vary over many wavelengths. In Chapter 9 3D Stokes parameters are defined by expanding the coherence matrix with Gell-Mann matrices as a basis. The definition of nine-by-nine 3D Mueller matrix is presented. The 3D Mueller matrix relates the incident 3D Stokes parameters to the exiting 3D Stokes parameters. Both the polarization ray tracing tensor and 3D Mueller matrix are defined in global coordinates. In Chapter 10 a summary of my work and future work are presented followed by a conclusion.
|
309 |
Homodyne High-harmonic Spectroscopy: Coherent Imaging of a Unimolecular Chemical ReactionBeaudoin Bertrand, Julien 21 August 2012 (has links)
At the heart of high harmonic generation lies a combination of optical and collision physics entwined by a strong laser field. An electron, initially tunnel-ionized by the field, driven away then back in the continuum, finally recombines back to rest in its initial ground state via a radiative transition. The emitted attosecond (atto=10^-18) XUV light pulse carries all the information (polarization, amplitude and phase) about the photorecombination continuum-to-ground transition dipolar field. Photorecombination is related to the time-reversed photoionization process. In this perspective, high-harmonic spectroscopy extends well-established photoelectron spectroscopy, based on charged particle detection, to a fully coherent one, based on light characterization. The main achievement presented in this thesis is to use high harmonic generation to probe femtosecond (femto=10^-15) chemical dynamics for the first time. Thanks to the coherence imposed by the strong driving laser field, homodyne detection of attosecond pulses from excited molecules undergoing dynamics is achieved, the signal from unexcited molecules acting as the reference local oscillator. First, applying time-resolved high-harmonic spectroscopy to the photodissociation of a diatomic molecule, Br2 to Br + Br, allows us to follow the break of a chemical bond occurring in a few hundreds of femtoseconds. Second, extending it to a triatomic (NO2) lets us observe both the previously unseen (but predicted) early femtosecond conical intersection dynamics followed by the late picosecond statistical photodissociation taking place in the reaction NO2 to NO + O. Another important realization of this thesis is the development of a complementary technique to time-resolved high-harmonic spectroscopy called LAPIN, for Linked Attosecond Phase INterferometry. When combined together, time-resolved high-harmonic spectroscopy and LAPIN give access to the complex photorecombination dipole of aligned excited molecules. These achievements lay the basis for electron recollision tomographic imaging of a chemical reaction with unprecedented angstrom (1 angstrom= 0.1 nanometer) spatial resolution. Other contributions dedicated to the development of attosecond science and the generalization of high-harmonic spectroscopy as a novel, fully coherent molecular spectroscopy will also be presented in this thesis.
|
310 |
The formation of ultracold rubidium molecules using ultrafast photoassociationMcCabe, David J. January 2010 (has links)
The establishment of robust laser-cooling techniques for the formation of ultracold atoms has provided a test-bed for low-temperature science, with scattering events changing character from incoherent thermal interactions to coherent quantum mechanical events. A natural extension is the pursuit of ultracold molecules in prescribed low-energy internal states. Atomic cooling techniques, however, do not generalize to the molecular regime due to the complex energy-level structure afforded by its extra degrees of motion. An indirect approach to ultracold molecule formation - photoassociation using ultrafast laser pulses - is the focus of this thesis. A broadband field associates atom pairs into a localized molecular wavepacket that evolves within the attractive excited-state potential. A suitably timed dump pulse may thus be applied to stabilize population into deeply bound ground vibrational states. This strategy may be generalized to any species whose spectroscopy matches the pulse spectrum, and offers a coherent population transfer scheme that does not require precise knowledge of the system. This thesis presents experiments using high-energy photoassociation pulses applied to ultracold rubidium atoms. The pulses quench the background ground-state molecular population but form bound dimers within the excited state. A pump-probe experiment was designed to chart the excited-state dynamics; however, the oscillations predicted by theoretical calculations were not evident in the molecular signal. The nature of the dynamics is expected to be strongly dependent on the initial state of the atom pairs addressed by the ultrafast pulse: a bound molecular population provides an additional candidate to free atoms. A spectroscopic measurement characterizes these bound molecules and identifies their formation mechanism. A subsequent experiment provides evidence that the predominant contributor to the pump-probe signal is the unbound initial population. The consequences with regard to both the observation of excited-state dynamics and the subsequent application of a dump pulse are discussed.
|
Page generated in 0.0851 seconds