• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 549
  • 506
  • 119
  • 66
  • 55
  • 36
  • 26
  • 18
  • 17
  • 13
  • 10
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 1664
  • 204
  • 142
  • 105
  • 102
  • 99
  • 95
  • 91
  • 90
  • 88
  • 86
  • 84
  • 83
  • 77
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
901

Temporal Processing in Low-Frequency Channels: Effects of Age and Hearing Loss in Middle-Aged Listeners

Leigh-Paffenroth, Elizabeth D., Elangovan, Saravanan 01 July 2011 (has links)
Background: Hearing loss and age interfere with the auditory system's ability to process temporal changes in the acoustic signal. A key unresolved question is whether high-frequency sensorineural hearing loss (HFSNHL) affects temporal processing in the low-frequency region where hearing loss is minimal or nonexistent. A second unresolved question is whether changes in hearing occur in middle-aged subjects in the absence of HFSNHL. Purpose: The purpose of this study was twofold: (1) to examine the influence of HFSNHL and aging on the auditory temporal processing abilities of low-frequency auditory channels with normal hearing sensitivity and (2) to examine the relations among gap detection measures, self-assessment reports of understanding speech, and functional measures of speech perception in middle-aged individuals with and without HFSNHL. Research Design: The subject groups were matched for either age (middle age) or pure-tone sensitivity (with or without hearing loss) to study the effects of age and HFSNHL on behavioral and functional measures of temporal processing and word recognition performance. These effects were analyzed by individual repeated-measures analyses of variance. Post hoc analyses were performed for each significant main effect and interaction. The relationships among the measures were analyzed with Pearson correlations. Study Sample: Eleven normal-hearing young adults (YNH), eight normal-hearing middle-aged adults (MANH), and nine middle-aged adults with HFSNHL were recruited for this study. Normal hearing sensitivity was defined as pure-tone thresholds ≤25 dB HL for octave frequencies from 250 to 8000 Hz. HFSNHL was defined as pure-tone thresholds ≤25 dB HL from 250 to 2000 Hz and ≥35 dB HL from 3000 to 8000 Hz. Data Collection and Analysis: Gap detection thresholds (GDTs) were measured under within-channel and between-channel conditions with the stimulus spectrum limited to regions of normal hearing sensitivity for the HFSNHL group (i.e., <2000 >Hz). Self-perceived hearing problems were measured by a questionnaire (Abbreviated Profile of Hearing Aid Benefit), and word recognition performance was assessed under four conditions: quiet and babble, with and without low-pass filtering (cutoff frequency = 2000 Hz). Results: The effects of HFSNHL and age were found for gap detection, self-perceived hearing problems, and word recognition in noise. The presence of HFSNHL significantly increased GDTs for stimuli presented in regions of normal pure-tone sensitivity. In addition, middle-aged subjects with normal hearing sensitivity reported significantly more problems hearing in background noise than the young normal-hearing subjects. Significant relationships between self-report measures of hearing ability in background noise and word recognition in babble were found. Conclusions: The conclusions from the present study are twofold: (1) HFSNHL may have an off-channel impact on auditory temporal processing, and (2) presenescent changes in the auditory system of MANH subjects increased self-perceived problems hearing in background noise and decreased functional performance in background noise compared with YNH subjects.
902

Measures of Tinnitus in Normal-hearing Individuals

Fillon, S., Rose, A. Danielle, Rost, L., Fagelson, Marc A. 01 November 2002 (has links)
No description available.
903

Distortion Product Otoacoustic Emissions in Normal-hearing Patients with Bilateral Tinnitus and in Non-tinnitus Controls

Fabijanska, Anna, Smurzynski, Jacek, Kochanek, Krzysztof, Bartnik, G., Raj-Koziak, Danuta 01 January 2011 (has links)
Abstract is available through the Journal of Hearing Science.
904

Lateralization Performance in Normal-hearing Adults Evaluated During Short-term Induced Asymmetrical Changes of Auditory Periphery

Smurzynski, Jacek 19 May 2005 (has links)
No description available.
905

Binaural Performance in Normal-hearing Young Adults Influenced by Short-term Induced Unilateral Conductive and Sensory Changes

Smurzynski, Jacek 30 March 2010 (has links)
There are no data available in the literature that have specifically evaluated differences in adaptation to unilateral conductive or sensory changes. However, based on clinical experience it may be postulated that changes of outer or middle ear function appear to be tolerated more easily than those of cochlear origin. Very often, patients seen in the clinic are unaware of a slight conductive hearing loss. By contrast, patients are immediately disturbed by a minor decline of cochlear function. One of several complaints of these patients is a change in their spatial orientation or difficulties in understanding speech in a noisy environment . The goal of the study was to determine if binaural performance tested psychoacoustically using a lateralization task is influenced differentially by short-term induced unilateral conductive or sensory changes. Lateralization performance was evaluated in seven normal-hearing subjects during induced auditory periphery asymmetry resulting from: l. exposure to noise presented for 5 minutes at 115 dBA SPL or 2. bilateral occlusion with earplugs of unequal attenuation for 48 hrs. An adaptive procedure was used to detenmine hearing thresholds of a 4-kHz narrow-band noise (NBN). In a lateralization task subjects indicated the positions of intracranial images created by the same NBN pr esented binaurally at SO dB SL with interau ral level differences ( I LDs) varying within plus/minus 12 dB. The tests were performed over a one-hour period post-exposure, immediately prior to and following plugging the ears, and at 24 and 48 hrs post-plugging. Immediately after the exposure or after plugging, there was a shift of lateral ization towards an unexposed side or the side blocked by the plug with a smaller attenuation, respectively. After a few minutes post-exposure, signals with I LD=0 were lateralized at midl ine. Within 30 minutes post -plugging, those signals were gradually lateralized closer to midline but remained off center for the rest of the plugging period. Thus, subjects showed fast adaptation to induced unilateral sensorineural changes and incomplete adaptation to induced asymmetrical conductive changes. Those rather unexpected r esults can be explained using a qualitative model assuming that: 1. a conductive impainment reflects a loss of sensitivity and 2. a cochlear impairment reflects both a loss of sensitivity and of the compressive nonlinearity on the basilar membrane. Recently, there has been an increase in the number of psychoacoustical studies on hearing-impaired listeners with a majority of them directed toward revealing deficits in monaural processing. However, in most acoustic environments encountered in everyday life, there are multiple sounds originating from different sources, and hearing-impaired people often display less binaural advantage than do normally hearing persons. The results of the cu rrent study support the view of the lack of a simple relationship between monaural and binaural processing, which is often r eported in studies on hearing-impaired people. This is an important issue in the process of fitting hearing aids binaurally.
906

Stochastic Representations of the Matrix Variate Skew Elliptically Contoured Distributions

Zheng, Shimin, Zhang, Chunming, Knisley, Jeff 01 January 2013 (has links)
Matrix variate skew elliptically contoured distributions generalize several classes of important distributions. This paper defines and explores matrix variate skew elliptically contoured distributions. In particular, we discuss two stochastic representations of the matrix variate skew elliptically contoured distributions.
907

The Effect of Age, Noise Level, and Frequency on Loudness Matching Functions of Normal Hearing Listeners with Noise Masking

Parrish, Linda Titera 01 February 2016 (has links)
Loudness recruitment is an abnormally rapid growth of perceived loudness above the hearing threshold that slows to normal growth as the intensity of the signal increases. Recruitment is common in sensorineural hearing loss and in simulated hearing loss with noise masking. This study looked at possible differences in loudness recruitment with age, noise level, and frequency. Participants from two age groups were tested. Group A included participants aged 18 to 30 years and Group B included participants aged 50 to 75 years. Participants practiced the Alternate Binaural Loudness Balance (ABLB) test without noise present. They then repeated the tests with masking noise. Tests were completed with two different noise levels (50 dB SPL and 70 dB SPL), and two different test tone frequencies (1000 Hz and 2000 Hz). Participants identified loudness matching points to reference intensities of 20, 40, 60, and 80 dB HL. Participants completed 3 trials at each intensity level. Difference scores of the intensity of the loudness matching point minus the intensity of the reference tone were computed and analyzed statistically. An analysis of variance (ANOVA) for repeated measures fails to show significance for between-subjects effect for age, within subject effect for frequency, and trial. An ANOVA for repeated measures shows significant within subject effect for noise and for intensity. The 70 dB SPL noise level shows greater difference scores and a steeper loudness matching function slope than the 50 dB SPL noise level. The greater difference scores and steeper slope are expected due to the higher hearing threshold created with the higher noise level. As the intensity level increases, the difference score decreases. The decrease in difference scores with increasing intensity levels shows the presence of loudness recruitment. The results of this study suggest the use of masking noise in order to measure recruitment is an acceptable simulation. Age alone does not account for changes in loudness recruitment. Therefore, recruitment measurement with noise masking may be a potential marker of early auditory dysfunction.
908

La marée dans un modèle de circulation générale dans les mers indonésiennes / The tides in a general circulation model in the indonesian sras

Nugroho, Dwiyoga 30 June 2017 (has links)
Les mers Indonésiennes sont le siège de très fort courants de marée qui interagissent avec la topographie pour créer des ondes internes à la fréquence de la marée que l'on appelle marée interne. Certaines d'entres elles, vont se propager et se dissiper dans l'océan intérieur. Le mélange associé provoque la remontée d'eau plus froide et plus riche en nutriments en surface qui influence le climat tropical et toute la chaine des écosystèmes marins. Surveiller les ressources marines est l'objectif du projet INDESO, dont cette thèse fait partie. Prendre en compte le mélange induit par la marée interne n'est pas facile. En effet, le résoudre entièrement n'est pas possible car les échelles concernées par les différents processus des ondes internes varient de plusieurs milliers de kilomètres (propagation) à quelques centimètres/millimètres (dissipation). De plus en plus de scientifiques introduisent le forçage de la marée dans leur modèle mais sans savoir où va l'énergie et comment les ondes sont dissipées. Dans cette thèse nous cherchons à proposer des outils et des débuts de réponses pour participer à cette meilleure compréhension de la dissipation des ondes internes dans le modèle numérique d'océan NEMO. Nous proposons certaines quantifications que nous comparons aux anciennes paramétrisations. J'ai, tout d'abord, contribué à une étude d'INDESO sur la validation de NEMO grâce à de nombreux jeu de données. Ensuite, j'ai cherché à quantifier et à qualifier le mélange induit par l'introduction de la marée explicite dans le modèle, ainsi que son impact sur les masses d'eau. (c'est redit plus loin)Il produit un refroidissement de surface de 0.3°C avec des maxima atteignant 0.8°C au niveau des sites de génération des ondes internes. Le modèle reproduit 75% de l'énergie attendue de génération des ondes internes, en bon accord avec des études précédentes. L'essentiel de la dissipation a lieu horizontalement (19GW) est proche de celle induite par la paramétrisation couramment utilisée (16GW), alors que, dans la réalité, on s'attend principalement à une dissipation réalisée grâce à des processus verticaux. Le modèle, au dessus des zones de génération, est de façon surprenante en très bon accord avec les mesures in situ de dissipation obtenues lors de la campagne INDOMIX. Par contre, dans les régions distantes des sources de génération, le modèle surestime le mélange par rapport aux observations d'INDOMIX. Dans la dernière partie de cette thèse j'ai commencé à apporter des éléments de réponse à la quantification des puits d'énergie dans NEMO. J'ai pour cela travaillé avec le cas test COMODO, qui est une section d'un fluide stratifié constituée d'une plaine abyssale, d'un talus et d'un plateau, forcée par la marée et sans friction de fond. Le modèle T-UGOm, un modèle hydrodynamique de marée, est comparé au modèle NEMO. Dans ce cadre, nous avons développé une méthode originale pour séparer la marée barotrope de la marée barocline. Elle repose sur la projection en modes normaux. Cette méthode donne, à première vue, des résultats similaires à ceux obtenus grâce à la méthode plus classique de soustraction par la moyenne verticale. Cependant, lorsque l'on regarde plus en détail les diagnostiques d'énergie on trouve que la méthode de projection en modes normaux offre une plus grande précision et un plus grand réalisme pour séparer la marée barotrope de la marée barocline. Plus on monte dans des modes élevés plus les longueurs ondes se raccourcissent dans NEMO par rapport à T-UGOm. Par ailleurs, NEMO dissipe la marée barotrope dans la plaine abyssale, alors qu'il n'y a explicitement pas de friction. Ce ne peut pas être la diffusion verticael ou horizontale qui est à l'œuvre ici, car il n'y a pas de raison physique pour une diffusion sur un fond plat. Le meilleur candidat pour expliquer cette diffusion serait le couplage 2D/3D du time splitting de NEMO. Un travail est en cours pour appliquer cette méthode sur l'ensemble de l'archipel Indonésien. / In the Indonesian seas, large tidal currents interact with the rough topography and create strong internal waves at the tidal frequency, called internal tides. Part of them will eventually propagate and dissipate far away from generation sites. Their associated mixing upwells cold and nutrient-rich water that prove to be critical for climate system and for marine resources. This thesis uses the physical ocean general circulation model, NEMO, as part of the INDESO project that aims at monitoring the Indonesian marine living resources. Models not taking into account tidal missing are unable to correctly reproduce the vertical structure of watermasses in Indonesian seas. However, taking into account this mixing is no simple task as the phenomena involved in tidal mixing cover a wide spectrum of spatial scales. Internal tides indeed propagate over thousands of kilometres while dissipation and mixing occurs at centimetric to millimetric scales. A model capable of resolving all these processes at the same time does not exist. Until now scientists either parameterised the tidal mixing or used models which only partly resolve internal tides. More and more scientists introduce explicit tidal forcing in their models but without knowing where the energy is going and how the internal tides are dissipated. This thesis intends to quantify energy dissipation in NEMO forced with explicit tidal forcing and compares it to the dissipation induced by the currently used parameterization. This thesis also provides new results about the quantification of the tidal energy budget in NEMO. I first contributed to an INDESO study that aimed at validating the model against several observation data sets. In a second and third study, I investigated the mixing produced in the model by explicit tidal forcing and its impact on water mass. Explicit tides forcing proves to produce a mixing comparable to the one produced by the parameterization. It also produces a significant cooling of 0.3 °C with maxima reaching 0.8°C in the areas of internal tide generation. The cooling is stronger on austral winter. The spring tides and neap tides modulate this impact by 0.1°C to 0.3°C. The model generates 75% of the expected internal tides energy, in good agreement with other previous studies. In the ocean interior, most of it is dissipated by horizontal momentum dissipation (19 GW), while in reality one would expect dissipation through vertical possesses. This value is close to the dissipation induced by the parameterization (16 GW). The mixing is strong over generation sites, and only 20% remains for far field dissipation mainly in the Banda and Sulawesi Seas. The model and the recent INDOMIX cruise [Koch-Larrouy et al. (2015)], which provided direct estimates of the mixing, are surprisingly in good agreement mainly above straits. However, in regions far away from the energy generation sites where INDOMIX found NO evidence of intensified mixing, the model produces too strong mixing. The bias comes from the lack of specific set up of internal tides in the model. More work is thus needed to improve the modeled dissipation, which is a theme of active research for the scientific community. I dedicated the last part of my thesis to the quantification of tidal energy sinks in NEMO. I first worked on a simple academic case: the COMODO internal tides test case, which analyses the behaviour of a vertically stratified fluid forced by a barotropic flow interacting over an idealized abyssal plain/slope/shelf topography without bottom friction. The results of the finite element T-UGOm hydrodynamic model are compared with those of NEMO. The central issue in calculating tidal energy budget is the separation of barotropic and baroclinic precesses.
909

Wideband Transient Otoacoustic Emissions in Ears with Normal Hearing and Sensorineural Hearing Loss

Schairer, Kim, Keefe, Douglas H., Fitzpatrick, Denis, Putterman, Daniel, Kolberg, Elizabeth, Garinis, Angie, Kurth, Michael, McGregor, Kara, Light, Ashley, Feeney, M. P. 18 October 2018 (has links)
Otoacoustic emissions (OAEs) are generated in the cochlea in response to sound and are used clinically to separate ears with normal hearing from sensorineural hearing loss (SNHL). OAEs were elicited at ambient pressure by clicks (CEOAE) and wideband chirps (TEOAE) sweeping from low-to-high frequency with a sweep rate of either 187.6 Hz/ms (short chirps) or 58.2 Hz/ms (long chirps) and a bandwidth extending to 8 kHz. Chirps were presented at the same sound exposure level (SEL) as clicks, or + 6 dB relative to clicks. A total of 288 OAE waveforms were averaged for short chirps in ~1 minute compared to 120 waveforms for long chirps. Compared to clicks, the chirp has a lower crest factor, which allows it to be presented at an overall higher SEL without distortion. OAEs were elicited in 79 adults with normal hearing and 51 adults with mild-to-moderate SNHL. One-sixth octave OAE signal-to-noise ratios from 0.7 to 8.0 kHz were compared across stimulus types and conditions. The area under the receiver operating curve (AUC) was used to assess the accuracy of detecting SNHL. Average AUCs across 1/6th octave frequencies ranged from 0.90 to 0.89 for TEOAEs and were 0.87 for the CEOAE suggesting excellent test performance.
910

Effect of Auditory Task Type on Physiological and Subjective Measures of Listening Effort in Individuals With Normal Hearing

Lau, Marcy K., Hicks, Candace, Kroll, Tobias, Zupanic, Steven 21 May 2019 (has links)
Purpose: Listening effort has traditionally been measured using subjective rating scales and behavioral measures. Recent physiological measures of listening effort have utilized pupil dilation. Using a combination of physiological and subjective measures of listening effort, this study aimed to identify differences in listening effort during 2 auditory tasks: sentence recognition and word recognition. Method: Pupil dilation and subjective ratings of listening effort were obtained for auditory tasks utilizing AzBio sentences recognition and Northwestern University Auditory Test No. 6 words recognition, across 3 listening situations: in quiet, at +6 dB signal-to-noise ratio, and at 0 dB signal-to-noise ratio. Task accuracy was recorded for each of the 6 conditions, as well as peak pupil dilation and a subjective rating of listening effort. Results: A significant impact of listening situation (quiet vs. noise) and task type (sentence recognition vs. word recognition) on both physiological and subjective measures was found. There was a significant interaction between listening situation and task type, suggesting that contextual cues may only be beneficial when audibility is uncompromised. The current study found no correlation between the physiological and subjective measures, possibly suggesting that these measures analyze different aspects of cognitive effort in a listening task.

Page generated in 0.0464 seconds