• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 823
  • 313
  • 142
  • 97
  • 91
  • 36
  • 28
  • 20
  • 14
  • 14
  • 7
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1874
  • 218
  • 175
  • 160
  • 160
  • 149
  • 116
  • 116
  • 96
  • 95
  • 94
  • 91
  • 90
  • 87
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

CO2-SELECTIVE MEMBRANE FOR FUEL CELL APPLICATIONS

El-Azzami, Louei Abdel Raouf 01 January 2006 (has links)
We have developed CO2-selective membranes to purified hydrogen and nitrogenfor fuel cell processes. Hydrogen purification impacts other industries such as ammoniaproduction and flue gas purification at reduced costs.Dense chitosan membranes were used for the first time to separate CO2 from amixture of 10% CO2, 10% H2, and 80% N2 at temperatures of 20 – 150oC and feedpressures of 1.5 atm – 5 atm. At 1.5 atm and 20 – 150oC, dry chitosan membranesachieved CO2 permeabilities, CO2/N2 and CO2/H2 separation factors of 0.383 – 24.3barrers, 10.7 – 3.40, and 4.54 – 1.50, respectively. The dry chitosan acted as an ordinarysolution-diffusion membrane: permeability increased with temperature but selectivitydecreased. The CO2/H2 and CO2/N2 separation factors at all temperatures enhanced CO2removal, making this membrane a candidate for fuel cell processes. The dual modetransport model fitted the transport data well.To achieve higher CO2 transport properties, chitosan was swollen with water.Water mediated the reaction of chitosan's amino groups with CO2. Humidifing the feedand sweep gases increased the membrane's performance. At 1.5 atm and 20 – 110 –150oC, CO2 permeabilities, CO2/N2 and CO2/H2 separation factors were 213 – 483 – 399barrers, 69.4 – 250 – 194, and 18.9 – 43.4 – 29, respectively. The presence of free waterand bound water facilitated the transport of CO2. Increasing feed pressure removed themaxima in permeability and selectivities at 110oC, but led to reduced CO2 permeabilities,CO2/N2 separation factors, and CO2/H2 separation factors to 156 – 286 barrers, 44.2 –131, and 12.0 – 16.7, respectively.To acquire higher CO2 transport properties, arginine-sodium salts wereincorporated in chitosan membranes as additional sites for facilitated transport. The salt'spercolation threshold was 40 wt %. At 1.5 atm and 20 – 110 – 150oC, CO2 permeabilities,CO2/N2 and CO2/H2 separation factors were 403 – 1498 – 1284 barrers, 122 – 852 – 516,and 31.9 – 144 – 75.5, respectively. Increasing feed pressure to 5 atm resulted indeclining CO2 permeabilities, CO2/N2 and CO2/H2 separation factors to 118 – 1078barrers, 21.6 – 352, and 5.67 – 47.9, respectively.Chitosan was characterized in terms of morphology, solution properties, thermalproperties, crystallinity, and degree of deacetylation.
492

Stochastic Models in Population Genetics: The Impact of Selection and Recombination

Brink-Spalink, Rebekka 23 January 2015 (has links)
No description available.
493

BIOMOLECULE LOCALIZATION AND SURFACE ENGINEERING WITHIN SIZE TUNABLE NANOPOROUS SILICA PARTICLES

Schlipf, Daniel M 01 January 2015 (has links)
Mesoporous silica materials are versatile platforms for biological catalysis, isolation of small molecules for detection and separation applications. The design of mesoporous silica supports for tailored protein and biomolecule interactions has been limited by the techniques to demonstrate biomolecule location and functionality as a function of pore size. This work examines the interaction of proteins and lipid bilayers with engineered porous silica surfaces using spherical silica particles with tunable pore diameters (3 – 12 nm) in the range relevant to biomolecule uptake in the pores, and large particle sizes (5 - 15 µm) amenable to microscopy imaging The differentiation of protein location between the external surface and within the pore, important to applications requiring protein protection or catalytic activity in pores, is demonstrated. A protease / fluorescent protein system is used to investigate protein location and protection as a function of pore size, indicating a narrow pore size range capable of protein protection, slightly larger than the protein of interest and approaching the protease dimensions. Selective functionalization, in this case exterior-only surface functionalization of mesoporous particles with amines, is extended to larger pore silica materials. A reaction time dependent functionalization approach is demonstrated as the first visually confirmed, selective amine functionalization method in protein accessible supports. Mesoporous silica nanoparticles are effective supports for lipid bilayer membranes and membrane associated proteins for separations and therapeutic delivery, although the role of support porosity on membrane fluidity is unknown. Transport properties of bilayers in lipid filled nanoparticles as a function of pore diameter and location in the particle are measured for the first time. Bilayer diffusivity increases with increasing pore size and is independent of bilayer location within the core, mid or cap of the particle, suggesting uniform long range bilayer mobility in lipid filled pores. Application of lipid bilayers on mesoporous silica was examined for membrane associated proteins A unique method to adhere functional proteins in lipid bilayers on mesoporous silica particles is established using vesicles derived from cell plasma membranes and their associated proteins. This method of membrane protein investigation retains proteins within native lipid membranes, stabilizing proteins for investigation on supports.
494

AGE, ATTENTION, AND OTS IN A CONSTRAINED VS UNCONSTRAINED TASK

Jensen, Courtney LeAnn 01 January 2012 (has links)
The discourse of older healthy adults is commonly described as lengthy and off-topic and thought to be associated with a general cognitive decline that occurs in healthy aging. This study investigated the overall decline in attention associated with healthy aging and its relationship to instances of off-topic speech (OTS) in a constrained and unconstrained language production task. Ninety cognitively healthy adults participated and comprised three age cohorts (40 – 75+). Participants completed cognitive measures of attention and two discourse tasks that included recounting personal events and describing a procedure. Older adults exhibited poorer scores on measures of selective and shifting attention, and elderly adults produced more OTS as compared to middle-aged (40s) and older (60s) adults in the unconstrained task only. Poorer scores of shifting attention were significantly correlated with more OTS in the older adults (60s) only. Overall, a marked increase in variability of language production was observed with advancing age. Results indicated the need for further research on the relationships between age, attention, OTS, and task type in healthy aging to determine an underlying cause for increasing variability of language production with age.
495

Får elever bättre uppmärksamhetsförmåga efter fysisk aktivitet? : En experimentell studie om fysisk aktivitets påverkan på uppmärksamhet

Granath, Stina January 2015 (has links)
The aim of this study is to find out whether there is any difference to be found in the attention ability before and after physical activity. The method used in this study was made of an experimental design. The participants were chosen through a cluster sampling and thereafter divided into a control group and an experimental group. A total of 64 pupils from upper secondary school participated in the study, 25 of them in the experimental group and 39 of them in the control group. Since the measure was repeated, both in respect of time and the comparison between the groups, a mixed design was used. The attention ability was measured on both occasions with a revised 7-series-test that measures vigilance and selective attention. On the first occasion the participants were supposed to subtract 7 from 1000 and on the second occasion to subtract 7 from 995. The more subtractions the participant had time for within the given five minute time range, the higher attention ability the participant were considered to have. The attention ability was for the experimental group measured before and after a gym lesson, while for the control group their attention ability was measured before and after a theoretical lesson. The results showed that there were a significant difference between the two test occasions, and there were also a significant difference in between the test groups. While both of the groups improved their results in the second test occasion, the experimental group performed better than the control group did on both test occasions. The results did not indicate any interactional effect, which means that the test score achieved by the individual test person on test 1 and 2 did not depend on whether the person was a member of the control group or the experimental group. On the second occasion, which was the test conducted after the physical activity, the experimental group improved their results slightly more than the control group did. However, the results did not improve as much for it to be considered a significant difference. In conclusion, there was no difference found in the attention ability before or after physical activity.
496

Closed-loop optimization of extracellular electrical stimulation for targeted neuronal activation

Kuykendal, Michelle Lea 27 August 2014 (has links)
We have developed a high-throughput system of closed-loop electrical stimulation and optical recording that facilitates the rapid characterization of extracellular stimulus-evoked neural activity. The ability to selectively stimulate a neuron is a defining characteristic of next-generation neural prostheses. Greater stimulus control and differential activation of specific neuronal populations allows for prostheses that better mimic their biological counterparts. In our system, we deliver square current pulses using a microelectrode array; automated real-time image processing of high-speed digital video identifies the neuronal response; and a feedback controller alters the applied stimulus to achieve a targeted response. The system controller performs directed searches within the strength-duration (SD) stimulus parameter space to build probabilistic neuronal activation curves. An important feature of this closed-loop system is a reduction in the number of stimuli needed to derive the activation curves when compared to the more commonly used open-loop system: this allows the closed-loop system to spend more time probing stimulus regions of interest in the multi-parameter waveform space, facilitating high resolution analysis. The stimulus-evoked activation data were well-fit to a sigmoid model in both the stimulus strength (current) and duration (pulse width) slices through the waveform space. The 2-D analysis produced a set of probability isoclines corresponding to each neuron-electrode pairing, which were fit to the SD threshold model described by Lapique (1907). We show that stimulus selectivity within a given neuron pair is possible in the one-parameter search space by using multiple stimulation electrodes. Additionally, by applying simultaneous stimuli to adjacent electrodes, the interaction between stimuli alters the neuronal activation threshold. The interaction between simultaneous multi-electrode multi-parameter stimulus waveforms creates an opportunity for increased stimulus selectivity within a population. We demonstrated that closed-loop imaging and micro-stimulation technology enable the study of neuronal excitation across a large parameter space, which is requisite for controlling neuronal activation in next generation clinical solutions.
497

Cooperative Techniques for Next Generation HF Communication Systems

Heidarpour, Mohammad Reza January 2013 (has links)
The high frequency (HF) band lies within 2-30 MHz of the electromagnetic spectrum. For decades, the HF band has been recognized as the primary means of long-range wireless communications. When satellite communication first emerged in 1960s, HF technology was considered to be obsolete. However, with its enduring qualities, HF communication survived through this competition and positioned itself as a powerful complementary and/or alternative technology to satellite communications. HF systems have been traditionally associated with low-rate data transmission. With the shift from analog to digital in voice communication, and increasing demands for high-rate data transmission (e.g., e-mail, Internet, FTP), HF communication has been going through a renaissance. Innovative techniques are required to push the capacity limits of the HF band. In this dissertation, we consider cooperative communication as an enabling technology to meet the challenging expectations of future generation HF communication systems. Cooperative communication exploits the broadcast nature of wireless transmission and relies on the cooperation of users relaying the information to one another. We address the design, analysis, and optimization of cooperative HF communication systems considering both multi-carrier and single-carrier architectures. As the multi-carrier HF system, we consider the combination of the orthogonal frequency division multiplexing (OFDM) with the bit interleaved coded modulation (BICM) as the underlying physical layer platform. It is assumed that cooperating nodes may use different HF propagation mechanisms, such as near-vertical-incidence sky wave (NVIS) and surface wave, to relay their received signals to the destination in different environmental scenarios. Diversity gain analysis, optimum relay selection strategy and power allocation between the source and relays are investigated for the proposed cooperative HF system. For single-carrier HF systems, we first derive a matched-filer-bound (MFB) on the error rate performance of the non-regenerative cooperative systems. The results from the MFB analysis are also used for relay selection and power allocation in the multi-relay cooperative systems. To overcome the intersymbol interference impairment induced by frequency-selectivity of the HF channel, equalization is inevitable at the destination in a single-carrier system. In this work, we investigate the minimum-mean-square-error (MMSE) based linear/decision-feedback frequency domain equalizers (FDEs). Both symbol-spaced and fractionally-spaced implementations of the proposed FDEs are considered and their performance is compared under different channel conditions and sampling phase errors at the relay and destination nodes.
498

The influence of acoustic background on visual Stroop task performance

Wallace, Marc 06 January 2010 (has links)
Living environments are seldom, if ever, devoid of all background auditory stimuli. However, the relationship between particular structural components of acoustic backgrounds and cognitive task performance remains unclear. Two experiments were completed to examine the influence of sound on a visual selective attention task. Participants performed the Stroop task (Stroop, 1935) while silence or background acoustic patterns of various complexities were presented over headphones. No effect of background sound on performance was found. A post-hoc analysis indicated that in comparison with participants who do not regularly listen to music while studying, participants who regularly listen to music while studying performed better on the Stroop task when a structured auditory pattern that included variation in both frequency and time interval was presented in the background. These results indicate that distinct structural components of background auditory sequences may interact with individual characteristics to influence cognitive performance on a task involving selective attention.
499

Data Driven Selective Sensing for 3D Image Acquisition

Curtis, Phillip 26 November 2013 (has links)
It is well established that acquiring large amounts of range data with vision sensors can quickly lead to important data management challenges where processing capabilities become saturated and pre-empt full usage of the information available for autonomous systems to make educated decisions. While sub-sampling offers a naïve solution for reducing dataset dimension after acquisition, it does not capitalize on the knowledge available in already acquired data to selectively and dynamically drive the acquisition process over the most significant regions in a scene, the latter being generally characterized by variations in depth and surface shape in the context of 3D imaging. This thesis discusses the development of two formal improvement measures, the first based upon surface meshes and Ordinary Kriging that focuses on improving scene accuracy, and the second based upon probabilistic occupancy grids that focuses on improving scene coverage. Furthermore, three selection processes to automatically choose which locations within the field of view of a range sensor to acquire next are proposed based upon the two formal improvement measures. The first two selection processes each use only one of the proposed improvement measures. The third selection process combines both improvement measures in order to counterbalance the parameters of the accuracy of knowledge about the scene and the coverage of the scene. The proposed algorithms mainly target applications using random access range sensors, defined as sensors that can acquire depth measurements at a specified location within their field of view. Additionally, the algorithms are applicable to the case of estimating the improvement and point selection from within a single point of view, with the purpose of guiding the random access sensor to locations it can acquire. However, the framework is developed to be independent of the range sensing technology used, and is validated with range data of several scenes acquired from many different sensors employing various sensing technologies and configurations. Furthermore, the experimental results of the proposed selection processes are compared against those produced by a random sampling process, as well as a neural gas selective sensing algorithm.
500

Characterization of molybdenum black coatings with reference to photothermal conversion of solar energy

Jahan, F. January 1987 (has links)
A study of thermal, structural, electrical and optical characteristics of molybdenum black surface coatings on various substrates has been made. The suitability of these coatings for use as selective absorbers for solar collector applications has been assessed. Molybdenum black (Mo black) coatings were prepared by electrodeposition (on aluminium) and a chemcial conversion method (on zinc and electroplated cobalt on nickel plated copper substrates). The solar absorptancer (αs) and thermal emittances (εth) of the coatings were determined from room temperature spectral reflectance measurements in the solar (0.3 to 2.5μm) and infrared regions (2.5 to 50 μm) respectively. The effect of different preparation parameters and substrate pretreatments on the spectral selectivity has been investigated in order to optimize the thermal performance. The spectral selectivity is related to the Mo-black coating thickness and surface roughness together with the microstructure, of the substrate and the intermediate layer. Dip coatings on polished zinc have significant selectivity (αs/ εth = 8.4 when αs = 0.76). The absorptance of the dip coatings is increased to 0.87 with εth = 0.13 by chemical etching of zinc prior to coating deposition. For coatings on electroplated cobalt on nickel plated copper (cobalt (NC) substrate), an absorptance as high as 0.94 has been obtained with an emittance value 0.3. By using an addition agent in the plating solution of cobalt the high emittance can be reduced to 0.1 with αs = 0.91 giving a coating with a relatively high efficiency (82.5%) for photo-thermal energy conversion. A study of the surface composition and microstructure of the coatings has been made using scanning and transmission electron microscopy together with electron diffraction, X-ray diffraction and X-ray photoelectron spectroscopy. The structural investigations indicate that Mo-black coatings contain polycrystals of orthorhombic Mo4O11 with a small proportion of Ni(OH)2. Presence of water and also Mo4O11 in the coatings are evident from IR spectroscopy study. The bandgap of the coating has been determined from optical transmission spectra (1.66 eV) and also from reflectance spectra (0.85 eV). The discrepancy between these two values has been discussed. The refractive indices of the coatings have also been estimated. The band gaps and refractive indices are found to be related to the spectral selectivity of the coatings. The durability test of the coatings shows that the coatings on etched zinc are more resistant to heat treatment than the coatings on unetched zinc. The coatings on cobalt (NC) substrates also show good stability for relatively short periods at temperatures ~400ºC. A study of the electrical properties of Mo-black coatings suggests that at electrical field strengths (greater than 106v/m the dominant conduction process is of the Poole-Frenkel type. The activation energy of the conduction process has been estimated to be -0.56 eV at higher temperatures. The effect of heat treatment on the electrical properties of the coatings has been examined. The dielectric constant of Mo-black has been estimated from A. C. measurements. At high frequency (20 kHz) the value of the dielectric constant is about 4.0.

Page generated in 0.0614 seconds