• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invariant Lattices of Several Elliptic K3 Surfaces

Fullwood, Joshua Joseph 29 July 2021 (has links)
This work is concerned with computing the invariant lattices of purely non-symplectic automorphisms of special elliptic K3 surfaces. Brandhorst gave a collection of K3 surfaces admitting purely non-symplectic automorphisms that are uniquely determined up to isomorphism by certain invariants. For many of these surfaces, the automorphism is also unique or the automorphism group of the surface is finite and with a nice isomorphism class. Understanding the invariant lattices of these automorphisms and surfaces is interesting because of these uniqueness properties and because it is possible to give explicit generators for the Picard and invariant lattices. We use the methods given by Comparin, Priddis and Sarti to describe the Picard lattice in terms of certain special curves from the elliptic fibration of the surface. We use symmetries of the Picard lattice and fixed-point theory to compute the invariant lattices explicitly. This is done for all of Brandhorst's elliptic K3 surfaces having trivial Mordell-Weil group.
2

On the classification of some automorphisms of K3 surfaces / Sur la classification de certains automorphismes de surfaces K3

Tabbaa, Dima al- 07 December 2015 (has links)
Un automorphisme non-symplectique d'ordre fini n sur une surface X de type K3 est un automorphisme σ ∈ Aut(X) qui satisfait σ*(ω) = λω où λ est une racine primitive n-ième de l'unité et ω est le générateur de H2,0(X). Dans cette thèse on s’intéresse aux automorphismes non-symplectiques d'ordre 8 et 16 sur les surfaces K3. Dans un premier temps, nous classifionsles automorphismes non-symplectiques σ d'ordre 8 quand le lieu fixe de sa quatrième puissance σ⁴ contient une courbe de genre positif, on montre plus précisément que le genre de la courbe fixée par σ est au plus un. Ensuite nous étudions le cas où le lieu fixe de σ contient au moins une courbe et toutes les courbes fixées par sa quatrième puissance σ⁴ sont rationnelles. Enfin nous étudions le cas où σ et son carré σ² agissent trivialement sur le groupe de Néron-Severi. Nous classifions toutes les possibilités pour le lieu fixe de σ et de son carré σ² dans ces trois cas. Nous obtenons la classification complète pour les automorphismes non-symplectiques d'ordre 8 sur les surfaces K3. Dans la deuxième partie de la thèse, nous classifions les surfaces K3 avec automorphisme non-symplectique d'ordre 16 en toute généralité. Nous montrons que le lieu fixe contient seulement courbes rationnelles et points isolés et nous classifions complètement les sept configurations possibles. Si le groupe de Néron-Severi a rang 6, alors il y a deux possibilités et si son rang est 14, il y a cinq possibilités. En particulier si l'action de l'automorphisme est trivial sur le groupe de Néron-Severi, alors nous montrons que son rang est six. Enfin, nous construisons des exemples qui correspondent à plusieurs cas dans la classification des automorphismes non-symplectiques d'ordre 8 et nous donnons des exemples pour chaque cas dans la classification des automorphismes non-symplectiques d'ordre 16. / A non-symplectic automorphism of finite order n on a K3 surface X is an automorphism σ ∈ Aut(X) that satisfies σ*(ω) = λω where λ is a primitive n−root of the unity and ω is a generator of H2,0(X). In this thesis we study the non-symplectic automorphisms of order 8 and 16 on K3 surfaces. First we classify the non-symplectic automorphisms σ of order eight when the fixed locus of its fourth power σ⁴ contains a curve of positive genus, we show more precisely that the genus of the fixed curve by σ is at most one. Then we study the case of the fixed locus of σ that contains at least a curve and all the curves fixed by its fourth power σ⁴ are rational. Finally we study the case when σ and its square σ² act trivially on the Néron-Severi group. We classify all the possibilities for the fixed locus of σ and σ² in these three cases. We obtain a complete classifiction for the non-symplectic automorphisms of order 8 on a K3 surfaces.In the second part of the thesis, we classify K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and isolated points and we completely classify the seven possible configurations. If the Néron-Severi group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular ifthe action of the automorphism is trivial on the Néron-Severi group, then we show that its rank is six.Finally, we construct several examples corresponding to several cases in the classification of the non-symplectic automorphisms of order 8 and we give an example for each case in the classification of the non-symplectic automorphisms of order 16.
3

Unique K3 Surfaces with Purely Non-Symplectic Automorphism: Insights from Weighted Projective SpaceUnique K3 Surfaces with Purely Non-Symplectic Automorphism:\\Insights from Weighted Projective Space

Melville, Elizabeth 22 April 2024 (has links) (PDF)
K3 surfaces have garnered attention across various fields, from optics and dynamics to high energy physics, making them a subject of extensive study for many decades. Recent work by mathematicians, including Brandhorst [1], has focused on non-symplectic automorphisms, aiming to categorize K3 surfaces that admit such automorphisms. Brandhorst made a list of unique K3 surfaces with purely non-symplectic automorphisms and established specific criteria for a K3 surface to be isomorphic to one on his list. This thesis aims to provide an alternative representation of select K3 surfaces from Brandhorst's list. While Brandhorst predominantly characterizes these surfaces as elliptic K3 surfaces, we offer a description of these surfaces as hypersurfaces in weighted projective space. Our approach involves verifying the criteria established by Brandhorst, thereby establishing an isomorphism between the surfaces in question. Through this study, we contribute to the understanding of K3 surfaces and their automorphisms while also demonstrating the correspondence between different spaces and methodologies for analyzing K3 surfaces. This work lays the groundwork for further investigations into K3 surfaces with purely non-symplectic automorphisms, paving the way for deeper insights into their structural properties and geometric intricacies.

Page generated in 0.075 seconds