• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 27
  • 9
  • 5
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 144
  • 36
  • 17
  • 17
  • 15
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Simplified Routines for Sample Preparation and Analysis of Chemical Warfare Agent Degradation Products

Subramaniam, Raja January 2012 (has links)
The thesis describes the development of new and improved methods for analyzing degradation markers from organophosphorus Chemical Warfare Agents (CWAs). Paper I and II describes an innovative and significantly improved method for the enrichment, derivatization (trimethysilylation) and GC-MS analysis of a broad range of organophosphorus CWAs degradation markers, namely the alkylphosphonic acids and a zwitterionic compound. That was achieved using solid phase disc extraction in combination with solid phase derivatization. The new method overcomes most limitations observed with existing techniques: it offers almost 100 % recoveries, requires no elution or evaporation steps, facilitates miniaturization of the solid sorbent and reagent, is compatible with in-vial derivatization, and minimizes the chromatographic background due to the use of a highly selective anion exchange sorbent disc. Paper III describes the development of new fluorinated diazomethane derivatization reagents and their evaluation for rapid and high sensitivity screening and identification of nerve agent degradation markers. The reagents are water-tolerant to some extent, which simplifies the derivatization step. The best reagent identified was 3,5-bis(trifluoromethyl)benzyl diazomethane, which outperformed the other reagent isomers tested and also the established commercial alternative, pentafluorobenzylbromide, allowing for the rapid (5 min) and direct derivatization of a 25 μL aqueous sample in acetonitrile. The spectra of the formed derivatives (high-energy collision induced fragmentation MS/MS) were used to construct a database (Paper IV) that proved to be superior in terms of match factor and probability compared to EI data gathered for trimethylsilyl derivatives. The study also focused on efforts towards achieving detailed structure information on the alkyl chains of the compounds in question using diagnostic ion interpretation. The final paper (paper V) describes the first rapid direct derivatization method for analyzing nerve agent metabolites in urine at trace levels. The method is based on the derivative from the paper III and the unambiguous identification was proven using a combination of low resolution and high resolution negative ion chemical ionization selected ion monitoring techniques. Novel results presented in these papers include: the first in-situ derivatization of alkylphosphonic acids on an SPE disc; the first direct derivatization of nerve agent markers in water and biomedical samples; the first high sensitivity GC-MS screening for these markers; and the first highly reproducible high-energy isomer specific CID MS/MS library. Overall, the results presented in this thesis represent significant contributions to the analysis of nerve agent degradation products.
72

Glycoconjugates : Solid-phase synthesis and biological applications

Wallner, Fredrik January 2005 (has links)
Glycoconjugates are biologically important molecules with diverse functions. They consist of carbohydrates of varying size and complexity, attached to a non-sugar moiety as a lipid or a protein. Glycoconjugate structures are often very complex and their intricate biosynthetic pathways makes overexpression difficult. This renders the isolation of pure, structurally defined compounds from natural sources cumbersome. Therefore, to better address questions in glycobiology, synthetic glycoconjugates are an appealing alternative. In addition, synthetic methods allow for the preparation of non-natural glycoconjugates that can enhance the understanding of the influence of structural features on the biological responses. In this thesis, synthetic methods for the preparation of glycoconjugates, especially glycolipid analogues, have been developed. These methods make use of solid-phase chemistry and are amenable to library synthesis of series of similar compounds. Solid-phase synthesis is a technique where the starting material of the reaction is attached to small plastic beads through a linker. This allows large excess of reagents to speed up the reactions and the sometimes difficult purifications of intermediate products are reduced to simple washings of the beads. One problem with solid-phase synthesis is the difficulties to monitor the reactions and characterize the intermediate products. Gel-phase 19 F-NMR spectroscopy, using fluorinated linkers and protecting groups, is an excellent tool to overcome this problem and to monitor solid-phase synthesis of e.g. glycoconjugates. Two novel fluorinated linkers for the attachment of carboxylic acids have been developed and are presented in the thesis. These linkers can be cleaved with both acids of varying strengths and nucleophiles like hydroxide ions, and they are stable to glycosylation conditions. In addition, a novel filter reactor for solid-phase synthesis was designed. The reactor fits into an ordinary NMR spectrometer to facilitate the reaction monitoring with gel-phase 19 F-NMR spectroscopy. The biological applications of the synthesized glycolipids were demonstrated in two different settings. The CD1d restricted binding of glycolipids carrying the monosaccharide α-GalNAc as carbohydrate could be detected on viable cells of mouse origin. CD1d is one of several antigen presenting molecules (the CD1 proteins) that presents lipids and glycolipids to circulating T-cells that in turn can initiate an immune response. The CD1 molecules are relatively sparsely investigated, and the method to measure glycolipid binding on viable cells, as described in the thesis, has the possibility to greatly enhance the knowledge of the structural requirements for CD1-binding. Serine-based neoglycolipids with terminal carboxylic acids were used to prepare glycoconjugate arrays with covalent bonds to secondary amines on microtiter plates. Carbohydrate arrays have great possibilities to simplify the study of interactions between carbohydrates and e.g. proteins and microbes. The usefulness of the glycolipid arrays constructed in the thesis was illustrated with two lectins, RCA120 from Ricinus communis and BS-1 from Bandeiraea simplicifolia. Both lectins bound to the array of neoglycolipids in agreement with their respective specificity for galactosides. Glycobiology is a large area of great interest and the methods described in this thesis can be used to answer a variety of glycoconjugaterelated biological questions.
73

Environmental Chemistry of Commercial Fluorinated Surfactants: Transport, Fate, and Source of Perfluoroalkyl Acid Contamination in the Environment

Lee, Holly 19 June 2014 (has links)
Perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs)are anthropogenic fluorinated surfactants that have been detected in almost every environmental compartment studied, yet their production and applications are far outweighed by those of other higher molecular weight fluorinated surfactants used in commerce. These fluorinated surfactants are widely incorporated in commercial products, yet their post-application fate has not been extensively studied. This thesis examines various biological and environmental processes involved in the fate of these surfactants upon consumer disposal. Specific focus was directed towards the environmental chemistry of polyfluoroalkyl phosphate esters (PAPs), perfluoroalkyl phosphonates (PFPAs), and perfluoroalkyl phosphinates (PFPiAs), and their potential roles as sources of perfluoroalkyl acids (PFAAs) in the environment. PAPs are established biological precursors of PFCAs, while PFPAs and PFPiAs are newly discovered PFAAs in the environment. Incubation with wastewater treatment plant (WWTP) microbes demonstrated the ability of PAPs to yield both fluorotelomer alcohols (FTOHs), which are established precursors of PFCAs, and the corresponding PFCAs themselves. WWTP biosolids-applied soil-plant microcosms revealed that PAPs can significantly accumulate in plants along with their degradation metabolites. This has implications for potential wildlife and human exposure through the consumption of plants grown and/or livestock raised on farmlands that have been amended with contaminated biosolids. A number of compound-and environmental-specific factors were observed to significantly influence the partitioning of PFPAs and PFPiAs between aqueous media and soil, as well as, aquatic biota during sorption and bioaccumulation experiments respectively. In both processes, PFPAs were primarily observed in the aqueous phase, while PFPiAs predominated in soil and biological tissues, consistent with the few environmental observations of these chemicals made to date. Detection of the PAP diesters (diPAPs), PFPiAs, and fluorotelomer sulfonates (FTSAs),all of which are used commercially, in human sera is evidence of human exposure to commercial fluorinated products, but the pathways by which this exposure occurs remain widely debated. Overall, this work presents novel findings on the environmental fate of commercial fluorinated surfactants and each of the process studied shows a clear link between the use of commercial products and the fluorochemical burden currently observed in the environment.
74

Environmental Chemistry of Commercial Fluorinated Surfactants: Transport, Fate, and Source of Perfluoroalkyl Acid Contamination in the Environment

Lee, Holly 19 June 2014 (has links)
Perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs)are anthropogenic fluorinated surfactants that have been detected in almost every environmental compartment studied, yet their production and applications are far outweighed by those of other higher molecular weight fluorinated surfactants used in commerce. These fluorinated surfactants are widely incorporated in commercial products, yet their post-application fate has not been extensively studied. This thesis examines various biological and environmental processes involved in the fate of these surfactants upon consumer disposal. Specific focus was directed towards the environmental chemistry of polyfluoroalkyl phosphate esters (PAPs), perfluoroalkyl phosphonates (PFPAs), and perfluoroalkyl phosphinates (PFPiAs), and their potential roles as sources of perfluoroalkyl acids (PFAAs) in the environment. PAPs are established biological precursors of PFCAs, while PFPAs and PFPiAs are newly discovered PFAAs in the environment. Incubation with wastewater treatment plant (WWTP) microbes demonstrated the ability of PAPs to yield both fluorotelomer alcohols (FTOHs), which are established precursors of PFCAs, and the corresponding PFCAs themselves. WWTP biosolids-applied soil-plant microcosms revealed that PAPs can significantly accumulate in plants along with their degradation metabolites. This has implications for potential wildlife and human exposure through the consumption of plants grown and/or livestock raised on farmlands that have been amended with contaminated biosolids. A number of compound-and environmental-specific factors were observed to significantly influence the partitioning of PFPAs and PFPiAs between aqueous media and soil, as well as, aquatic biota during sorption and bioaccumulation experiments respectively. In both processes, PFPAs were primarily observed in the aqueous phase, while PFPiAs predominated in soil and biological tissues, consistent with the few environmental observations of these chemicals made to date. Detection of the PAP diesters (diPAPs), PFPiAs, and fluorotelomer sulfonates (FTSAs),all of which are used commercially, in human sera is evidence of human exposure to commercial fluorinated products, but the pathways by which this exposure occurs remain widely debated. Overall, this work presents novel findings on the environmental fate of commercial fluorinated surfactants and each of the process studied shows a clear link between the use of commercial products and the fluorochemical burden currently observed in the environment.
75

Synthesis of Nickel-Chelating Fluorinated Lipids for Membrane Protein Monolayer Crystallisations

Waleed Hussein Unknown Date (has links)
Abstract 3D crystallisation of membrane proteins presents a bottleneck for the determination of the structures of membrane proteins. Obtaining 3D crystals of membrane proteins is made difficult by a number of factors including the poor solubility and instability of membrane proteins outside of their native membrane environment. 2D crystallisation of membrane proteins offers an alternative to preserve the conformational structure and functional activities of membrane proteins within their native bilayer membranes in 2D arrays from which the structure of membrane proteins can be determined. Different techniques exist for obtaining 2D crystals of membrane proteins including surface crystallisation or more commonly 2D crystallisation by detergent removal (using either dilution, dialysis, hydrophobic resin adsorption or cyclodextrin complexation) to promote reconstitution of the protein molecules within bilayer-forming lipids. Another method which has been emerged and is being used increasingly is the lipid monolayer technique for 2D crystallisation of proteins. The use of lipid monolayers to bind and adsorb proteins is an attractive and increasingly important method for generating high localised concentrations of oriented proteins and protein complexes. These bound proteins can be imaged directly, or they may form 2D crystalline arrays that are amenable to structure determination by single particle analysis or 2D electron crystallography. 2D crystals grown by this technique can also be used to initiate the growth of 3D crystals for X-ray diffraction analysis. Many derivatised lipids have been prepared for use with this technique, incorporating a diverse range of ligands to enable binding to specific proteins. Synthetic lipids containing functionalised head groups that chelate Ni2+ or Cu2+ have also been prepared to bind and orient expressed proteins that contain His-tags. Protein-binding monolayer-forming lipids generally consist of two distinct components: (1) a branched hydrocarbon tail to confer fluidity to the monolayer and (2) a functionalised hydrophilic head group to facilitate binding of protein molecules at the air-water interface. Newer examples of these compounds also incorporate perfluorinated hydrocarbon moieties to confer detergent resistance to these lipids. The present work discusses the chemistry of all these functionalised lipids and their contributions to monolayer 2D protein crystallisation. This thesis focuses on the synthesis of novel nickel-chelating fluorinated lipids to be used as a template for 2D crystallisation of His-tagged membrane proteins at the air/water interface. These monolayer-forming lipids have been designed with three distinct components: (i) a branched hydrocarbon tail to confer fluidity of the monolayer, (ii) a perfluorinated central core for detergent resistance, and (iii) a nickel-chelating hydrophilic head group to facilitate binding of recombinant, polyhistidine-tagged fusion proteins. Alkylations of fluorinated alcohols used in these syntheses proceed in good yields only with the application of prolonged sonication and, in some cases, in the presence of phase-transfer catalysts. Biophysical properties of Langmuir monolayers formed by our target synthetic fluorinated lipids were studied, comparing the results obtained with those of DOPC and DOGS Ni-NTA as examples of non fluorinated lipids. The Langmuir films were characterised by surface pressure-area isotherms and X-ray reflectometry to show their fluidity, thickness and packing density. The stability of fluorinated lipid monolayers and their ability to resist the solubilisation effects of a number of detergents were investigated using monolayer and affinity grid techniques. Results showed that fluorinated lipids offer an improved resistance to the solubilisation effects of detergents compared with their non-fluorinated counterparts. A number of trials for 2D crystallisation of both soluble and membrane proteins have been performed using fluorinated lipid monolayers. These new synthetic fluorinated lipids were successfully used to obtain 2D crystals of the His-tagged membrane protein BmrA from Bacillus subtillis by the monolayer technique.
76

Synthesis of Nickel-Chelating Fluorinated Lipids for Membrane Protein Monolayer Crystallisations

Waleed Hussein Unknown Date (has links)
Abstract 3D crystallisation of membrane proteins presents a bottleneck for the determination of the structures of membrane proteins. Obtaining 3D crystals of membrane proteins is made difficult by a number of factors including the poor solubility and instability of membrane proteins outside of their native membrane environment. 2D crystallisation of membrane proteins offers an alternative to preserve the conformational structure and functional activities of membrane proteins within their native bilayer membranes in 2D arrays from which the structure of membrane proteins can be determined. Different techniques exist for obtaining 2D crystals of membrane proteins including surface crystallisation or more commonly 2D crystallisation by detergent removal (using either dilution, dialysis, hydrophobic resin adsorption or cyclodextrin complexation) to promote reconstitution of the protein molecules within bilayer-forming lipids. Another method which has been emerged and is being used increasingly is the lipid monolayer technique for 2D crystallisation of proteins. The use of lipid monolayers to bind and adsorb proteins is an attractive and increasingly important method for generating high localised concentrations of oriented proteins and protein complexes. These bound proteins can be imaged directly, or they may form 2D crystalline arrays that are amenable to structure determination by single particle analysis or 2D electron crystallography. 2D crystals grown by this technique can also be used to initiate the growth of 3D crystals for X-ray diffraction analysis. Many derivatised lipids have been prepared for use with this technique, incorporating a diverse range of ligands to enable binding to specific proteins. Synthetic lipids containing functionalised head groups that chelate Ni2+ or Cu2+ have also been prepared to bind and orient expressed proteins that contain His-tags. Protein-binding monolayer-forming lipids generally consist of two distinct components: (1) a branched hydrocarbon tail to confer fluidity to the monolayer and (2) a functionalised hydrophilic head group to facilitate binding of protein molecules at the air-water interface. Newer examples of these compounds also incorporate perfluorinated hydrocarbon moieties to confer detergent resistance to these lipids. The present work discusses the chemistry of all these functionalised lipids and their contributions to monolayer 2D protein crystallisation. This thesis focuses on the synthesis of novel nickel-chelating fluorinated lipids to be used as a template for 2D crystallisation of His-tagged membrane proteins at the air/water interface. These monolayer-forming lipids have been designed with three distinct components: (i) a branched hydrocarbon tail to confer fluidity of the monolayer, (ii) a perfluorinated central core for detergent resistance, and (iii) a nickel-chelating hydrophilic head group to facilitate binding of recombinant, polyhistidine-tagged fusion proteins. Alkylations of fluorinated alcohols used in these syntheses proceed in good yields only with the application of prolonged sonication and, in some cases, in the presence of phase-transfer catalysts. Biophysical properties of Langmuir monolayers formed by our target synthetic fluorinated lipids were studied, comparing the results obtained with those of DOPC and DOGS Ni-NTA as examples of non fluorinated lipids. The Langmuir films were characterised by surface pressure-area isotherms and X-ray reflectometry to show their fluidity, thickness and packing density. The stability of fluorinated lipid monolayers and their ability to resist the solubilisation effects of a number of detergents were investigated using monolayer and affinity grid techniques. Results showed that fluorinated lipids offer an improved resistance to the solubilisation effects of detergents compared with their non-fluorinated counterparts. A number of trials for 2D crystallisation of both soluble and membrane proteins have been performed using fluorinated lipid monolayers. These new synthetic fluorinated lipids were successfully used to obtain 2D crystals of the His-tagged membrane protein BmrA from Bacillus subtillis by the monolayer technique.
77

Nouveaux copolymères fluorés pour membranes de pile à combustible alcaline à coeur solide / Original copolymers for alkaline fuel cells membranes

Couture, Guillaume 13 November 2013 (has links)
La synthèse de membranes polymères pour pile à combustible alcaline à cœur solide (SAFC) constitue l'objectif de ce travail. Ces membranes doivent présenter une conductivité des ions hydroxydes élevée, une haute stabilité thermique, une résistance chimique en particulier à la réaction d'élimination d'Hofmann, une insolubilité dans l'eau et une résistance mécanique suffisante pour permettre leur mise en forme et la réalisation d'assemblages membrane-électrode. Pour remplir ces critères, l'utilisation de copolymères alternés poly(chlorotrifluoroéthylène-alt-éther vinylique), poly(CTFE-alt-EV), porteurs de groupements ammonium quaternaire a été considérée. Différents éthers vinyliques fonctionnels ou fonctionnalisables ont été obtenus par transéthérification catalysée par le palladium avec des taux de conversion supérieurs à 80 %. La copolymérisation radicalaire de ces monomères avec le CTFE a permis d'obtenir des copolymères dont l'alternance a été vérifiée par analyse élémentaire et spectroscopie RMN, et dont les propriétés physico-chimiques et thermiques ont été étudiées par des techniques variées. Différentes méthodes de fonctionnalisation ont été mises en place et ont permis d'obtenir plusieurs copolymères poly(CTFE-alt-EV) originaux porteurs de groupements ammonium quaternaire non sensibles à la dégradation d'Hofmann et présentant une stabilité thermique satisfaisante pour un usage en pile à combustible. Dans l'optique d'améliorer les propriétés mécaniques de ce type de matériau, des terpolymères ont été synthétisés avec un pourcentage variable de vinyloxy-1H,1H,2H,2H-perfluorodécane, un éther vinylique fluoré. Ce dernier a permis l'augmentation de la masse molaire des terpolymères, la diminution de leur température de transition vitreuse et l'amélioration de leurs propriétés filmogènes. / The synthesis of polymeric membranes for solid alkaline fuel cells is the main topic of this work. These membranes have to exhibit several properties such as: a high hydroxide ion conductivity, a high thermal stability, a good chemical resistance especially to Hofmann degradation, a water-insolubility and mechanical properties suitable for the preparation of a membrane-electrode assembly. To fulfill these requirements, the use of alternated copolymers based on chlorotrifluoroethylene and vinyl ethers (poly(CTFE-alt-VE)) bearing quaternary ammonium groups has been considered. First, various functional or functionalizable vinyl ethers have been synthesized by palladium-catalyzed transetherification with a conversion rate higher than 80%. These monomers have been successfully copolymerized with CTFE and the good alternation of these monomers has been evidenced by elemental analysis and NMR spectroscopy. Furthermore, their physical, chemical and thermal properties have been studied by several techniques. Various functionalization steps have been carried out, yielding original poly(CTFE-alt-VE) copolymers bearing quaternary ammonium groups non sensitive to Hofmann degradation and with high thermal stabilities suitable for fuel cells. To improve the mechanical properties of these materials, terpolymers containing an increasing amount of 1H,1H,2H,2H-perfluorodecyl vinyl ether have been synthesized. Such terpolymers exhibited higher molecular weights, lower glass transition temperatures, and improved film-forming properties compared to the equivalent copolymers.
78

Elaboration de membranes pour piles à combustible à architecture réseaux (semi-)interpénétrés de polymères / New interpenetrating polymer network membranes as proton exchange membrane fuel cells (PEMFC)

Delhorbe, Virginie 18 July 2011 (has links)
Les membranes polymères utilisées actuellement dans les piles à combustible voient leurs performances diminuer à haute température (T > 90°C) et à faible humidité relative (HR < 50%) [1]. Cette diminution est principalement liée aux pertes des propriétés mécaniques et de conduction dans ces conditions. Afin de remédier à ces inconvénients, des membranes originales présentant une architecture de réseaux (semi-)interpénétrés de polymères [2] ((semi-)RIP) dans lesquelles un réseau hydrophobe est associé à un réseau hydrophile, ont été développées dans le cadre du projet ANR PAN-H « AMEIRICC ».Ces membranes sont constituées d'un réseau fluoré assurant la tenue mécanique et d'un réseau polyélectrolyte sulfoné assurant la conduction protonique du matériau, chacun des réseaux étant issu de différents précurseurs fournis par l'IAM et le LMOPS. Après la réaction de polymérisation/réticulation des deux réseaux, les matériaux sont caractérisés afin de réaliser un retour rapide sur leur synthèse et d'optimiser cette dernière pour parvenir à un matériau présentant les principales propriétés recherchées (conductivité protonique, stabilité thermique et chimique, principalement). Une fois la synthèse optimisée, des premiers matériaux ont été fournis au LMPB, au SPrAM et au LITEN pour la validation des membranes sélectionnées. Les propriétés structurales et les valeurs de conductivité des matériaux ont permis de conclure que les (semi-)RIP présentent une morphologie similaire à celle décrite pour le Nafion dans laquelle la phase fluorée et la phase conductrice ionique sont co-continues. Plusieurs séries de ces membranes ont ensuite été réalisées en modifiant la composition chimique afin d'étudier la variation des propriétés des matériaux obtenus. Enfin, les premiers tests en pile à combustible de ces membranes originales se sont révélés prometteurs.[1] R. Borup, J. Meyers, B. Pivovar, Chem. Rev. 107 (2007) 3904.[2] L. H. Sperling and V. Mishra. The current status of interpenetrating polymer networks. In: Kim SC, Sperling LH, editors. IPNs around the world: science and engineering. New York: Wiley; 1997: p. 1-25. / The polymer membranes currently used in fuel cells are reducing their performance at high temperature (T > 90°C) and low relative humidity (RH < 50%) [1]. This decrease is mainly due to loss of mechanical properties and conduction in these conditions. To overcome these drawbacks, unique membranes having an architecture (semi-) interpenetrating polymer network [2] ((semi-) IPN) in which a hydrophobic network is associated with a hydrophilic network, were developed under PAN-H “AMEIRICC” ANR Project.These membranes consist of fluorinated network ensuring the mechanical and sulfonated polyelectrolyte network ensuring the proton conduction of material, each network being derived from different precursors provided by IAM and LMOPS. After the polymerization/cross linking reaction of the two systems, materials are characterized to carry out a rapid return on their synthesis and optimize it to achieve a material with the main properties (proton conductivity, thermal and chemical stability, primarily). Once the synthesis is optimized, the first materials were provided to LMPB, SPrAM and LITEN for validation of selected membranes.The structural properties and conductivity values of materials led to the conclusion that (semi-) IPN have a similar morphology to that described for the Nafion in which the fluorous phase and the ionic conducting phase are co-continuous.Then several series of these membranes were conducted by changing the chemical composition in order to study the variation of obtained material properties. Finally, the first fuel cell test of original membranes have shown promise.[1] R. Borup, J. Meyers, B. Pivovar, Chem. Rev. 107 (2007) 3904.[2] L. H. Sperling and V. Mishra. The current status of interpenetrating polymer networks. In: Kim SC, Sperling LH, editors. IPNs around the world: science and engineering. New York: Wiley; 1997: p. 1-25.
79

Apports des activités chimiques et photochimiques des alkyls azides à la synthèse macromoléculaire / Contributions of the alkyl azides’ reactivity to macromolecular synthesis

Soules, Aurélien 24 September 2010 (has links)
L'objectif de ces travaux était d'utiliser certains aspects de l'activité chimique et photochimique de télomères fluorés porteurs de fonctions azides, dans le but de promouvoir les synthèses de polymères thermostables et de nouveaux matériaux photoréticulés. En premier lieu, nous avons développé et caractérisé une nouvelle classe de poly(alkyl-aryl) éthers par une promotion de la compétition de la réaction de « Click » et de couplage de Hay. Par la suite, l'activité photochimique de ces composés fluorés a été étudiée et utilisée pour élaborer des matériaux photoréticulés. Les énergies libres des surfaces des films obtenus ont été calculées en utilisant le modèle d'Owens et Wendt. Les rugosités et les compositions de ces surfaces présentant des mouillabilités singulières ont été investiguées par le biais d'analyses par profilométrie, AFM et EDX. En dernier lieu, les synthèses et caractérisations de réseaux photoréticulés sont abordées. La post sulfonation de ces matériaux a conduit à la préparation de nouveaux électrolytes pour l'application pile à combustible dont les microstructures et propriétés physico-chimiques ont été étudiées. / This work aims at using both chemical and photochemical activities of fluorinated telomers bearing azido end groups, to promote the synthesis of thermostable macromolecules and original photocrosslinked networks. In a first part, we have prepared and characterized a novel class of linear poly(alkyl aryl) ethers by the promotion of competitive “Click” reaction and Hay coupling. Then, the photolysis under UV irradiation of these fluorinated polymers was studied and used to generate photocrosslinked materials. The surface free energies of the resulting films were established using the Owens-Wendt model. The roughness and composition of the surfaces were investigated by profilometry, AFM and EDX analysis. Finally, the preparation under UV irradiation of original polymer networks was performed. The post-sulfonation of these materials allowed to prepare new proton exchange membranes for fuel cells application. The microstructures, physical and chemical properties of these electrolytes were investigated.
80

Synthèses de nanoparticules fluorées pour application dans les revêtements / Synthesis of fluorinated nanoparticles for coatings

Durand, Nelly 30 November 2010 (has links)
Cette thèse s'inscrit dans le cadre d'un projet de l'Agence National de Recherche (ANR) dans lequel participent deux sociétés et deux laboratoires universitaires. L'objectif de ce projet consiste à améliorer les propriétés mécaniques (résistance à l'abrasion) et thermiques (température de dégradation) de revêtements fluorés antiadhésifs en y intégrant des nanoparticules de silice. Or, la silice est une charge hydrophile qui se disperse difficilement dans une matrice fluorée. C'est pourquoi nous avons envisagé de modifier sa surface avec des réactifs fluorés, et la nature des divers précurseurs a une influence sur l'amélioration de la dispersion des nanoparticules. Ainsi, nous avons, dans un premier chapitre, étudié la miscibilité et la compatibilité des polymères fluorés entre eux. Les polymères fluorés sont réputés pour leur inertie chimique, hydrophobie et leurs propriétés thermiques très avantageuses. Mais les très bonnes propriétés des polymères fluorés entraînant parfois des difficultés de mise en œuvre, nous avons choisi de travailler avec deux copolymères fluorés, le poly(TFE-co-HFP), un copolymère statistique à base de tétrafluoroéthylène (TFE, -CF2-CF2-) et d'hexafluoropropène (HFP, -CF(CF3)-CF2-) voisin du PTFE utilisé pour les revêtements, et le poly(VDF-co-HFP), un copolymère composé de fluorure de vinylidène (VDF, -CH2-CF2) et d'hexafluoropropène. Ils présentent de bonnes propriétés et sont faciles à employer à l'état fondu de par leurs faibles températures de fusion (respectivement de 140 et 275°C pour le poly(VDF-co-HFP) et le poly(TFE-co-HFP)). Des mélanges binaires à l'état fondu ont été réalisés puis caractérisés entre ces deux copolymères semi-cristallins mais également avec un polyéther fluoré, composé de plusieurs unités d'oxyde d'hexafluoropropène (HFPO, -CF(CF3)CF2O-) totalement amorphe. Les résultats obtenus suite à ces mélanges ont indiqué les trois types de précurseurs fluorés à employer lors des modifications de surface et ce en fonction de la matrice fluorée : composés à base de TFE (-CF2-CF2-), de VDF (-CH2-CF2-) et de l'HFPO (-CF(CF3)CF2O-). Ainsi, le second chapitre est consacré aux stratégies de synthèse de ces précurseurs fluorés contenant des motifs VDF et HFPO. Deux méthodes de polymérisation ont été réalisées : 1) La polymérisation radicalaire par transfert d'iode (ITP) du VDF conduisant à CnF2n+1-[CH2-CF2]m-I ; 2) La polymérisation anionique par ouverture de cycle de l'HFPO permettant la synthèse C3F7O-[CF(CF3)CF2O]-CF(CF3)-COX avec X : groupements fonctionnels. Ces produits ont été caractérisés par spectroscopies RMN du 19F et du 1H, IR, GPC, DRX, ATG et DSC. Les oligomères du TFE (CnF2n+1-I ou CnF2n+1-C2H4-SH avec n= 4 ou 6) n'ont pas été préparés du fait des risques encourus lors de la manipulation du TFE (gaz explosif). Après leurs synthèses, fonctionnalisations et caractérisations, nous les avons greffés à la surface de silices submicroniques. La principale méthode de greffage employé est le « grafting onto » qui permet de modifier la surface des particules inorganiques avec des macromolécules (oligomères ou polymères) et le troisième chapitre présente trois méthodes de greffage : 1) L'addition radicalaire de RFI ou RFC2H4SH sur une double liaison (vinylique ou allylique) ; 2) La condensation d'un oligomère à base d'HFPO fonctionnalisé ester méthylique sur une silice possédant des fonctions amine ; 3) La méthode la plus communément, utilisée l'hydrolyse-condensation, à partir d'oligo(HFPO) fonctionnalisés alkoxysilane. Les méthodes d'analyses employées afin de caractériser ces nanohybrides fluorés sont les spectroscopies RMN 1H et 29Si à l'état solide, IR, les analyses élémentaires et thermogravimétriques. Nous avons utilisé ces différentes stratégie de modifications de surface afin d'obtenir une large gamme de silices modifiées avec des groupements fluorés tout en tenant compte de la miscibilité des chaînes fluorées entre elles (Chapitre 1). / This thesis is part of a project of the National Research Agency (ANR) which involved two companies and two university laboratories. The objective of this project is to improve the mechanical properties (abrasion resistance) and thermal (degradation temperature) nonstick fluorinated coatings by incorporating silica nanoparticles. However, silica is a hydrophilic filler which is hardly dispersed in a fluoridated matrix. Therefore, we planned to modify its surface with fluorinated reagents, and the nature of various precursors has an influence on improving the nanoparticles dispersion. Thus, we, as a first chapter, studied the miscibility and compatibility of the fluoropolymers. Fluoropolymers are known for their very attractive properties like chemical inertness, hydrophobicity and thermal. But these very good properties of fluoropolymers sometimes cause difficulties application, we chose to work with two fluorinated copolymers, poly (TFE-co-HFP), a copolymer based on tetrafluoroethylene (TFE,-CF2-CF2-) and hexafluoropropylene (HFP,-CF(CF3)-CF2-) neighbor of PTFE used for coatings, and poly (VDF-co-HFP), a copolymer composed of vinylidene fluoride (VDF, -CH2-CF2) and hexafluoropropylene. They have good properties and are easy to use in blend due to their low melting temperatures (140 and 275° C for poly (VDF-co-HFP) and poly (TFE-co-HFP), respectively). Blends have been realized and characterized between two semi-crystalline copolymers but also with a fluorinated polyether composed of several units of hexafluoropropylene oxide (HFPO,-CF(CF3)CF2O-) which is completely amorphous. The results obtained from these blends indicated that the three types of precursors can be used for fluorinated surface modifications and in function of the fluoropolymer : compounds are based on TFE (-CF2-CF2-), VDF (-CH2-CF2-) and HFPO (-CF(CF3)CF2O-). Thus, in the second chapter, the synthesis of these fluorinated precursors containing VDF and HFPO units are shown for this, two polymerization methods were carried out : 1) The iodine transfer polymerization (ITP) of VDF ; 2) The anionic polymerization by ring opening of HFPO. These products were characterized by 19F and 1H NMR spectroscopy, FTIR, GPC, XRD, TGA and DSC. Oligomers of the TFE (CnF2n+1-I or CnF2n+1-C2H4-SH with n = 4 or 6) have not been prepared because of the risks incurred during the handling of TFE (explosive gas). After their synthesis, functionalization and characterization, we have grafted them on the surface of silica nanoparticles. The main method used is the "grafting onto" which allows to modify the surface of inorganic particles with macromolecules (oligomers or polymers) and the third chapter presents three methods of grafting : 1) The radical addition of RFI and/or RFC2H4SH on a double bond (vinyl or allyl) ; 2) The condensation of an oligomer based HFPO functionalized methyl ester on a silica with amine functions ; 3) The most commonly used hydrolysis-condensation, using oligo (HFPO) functionalized alkoxysilane. The analysis methods used to characterize these fluorinated nanohybrids are the 1H and 29Si solid state NMR, FTIR, elemental and thermogravimetric analysis. We used these different surface modification to obtain a wide range of modified silica with fluorinated groups. After their characterization, these fluorinated silica are introduced by blend into two fluorinated matrices poly (VDF-co-HFP) and poly (TFE-co-HFP). The fourth is dedicated to the study of nanocomposite poly (VDF-co-HFP) / silica. Initially, a state of the art is presented as this type of composite has been widely discussed in the literature contrary to nanocomposites poly (VDF-co-HFP) or poly (TFE-co-HFP) with fluorinated nanoparticles.

Page generated in 0.073 seconds