• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

"Desenvolvimento de membranas híbridas a partir de poli(éter-éter-cetona) sulfonada e copolisilsesquioxanos fosfonados para aplicação em célula a combustível com membrana trocadora de prótons - PEMFC" / "Developments of hybrid membranes from sulfonated poly (aryl ether ketones) ketone and phosphonated copolysetsesquioxanes to application in proton exchange membrane fuel cell - PEMFC"

Aguiar, Kelen Menezes Flores Rossi 25 July 2011 (has links)
Made available in DSpace on 2016-12-08T17:19:38Z (GMT). No. of bitstreams: 1 Resumo.pdf: 39215 bytes, checksum: 1745ec4d00cea88989dfe2465399b633 (MD5) Previous issue date: 2011-07-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The current reference membrane for PEM is Nafion®, a perfluorosulfonic copolymer that exhibits good chemical stability and high proton conductivity in wet conditions and temperatures lower than 90 °C. However the application of this membrane still limited due to loss of conductivity at high temperatures and high cost. In this context new polymeric materials have been studied such as poly(aryl ether ketones), poly(ether-sulphone) and polybenzimidazole. Among them, membranes based on poly(ether-ether-ketone)-PEEK proved to be very promising to application in proton exchange membrane fuel cell (PEMFC). The objective of this study is to develop alternative membranes that have comparable properties to perfluorinated membranes. In this work the production and characterization of hybrid membranes of sulfonated poly(ether-ether-ketone)(SPEEK) and phosphonated copolysilsesquioxanes (CP) SPEEK/CP, and its application in proton exchange membrane fuel cell were studied. For this purpose it carried out the pos-sulfonation of PEEK with sulfuric acid as a sulfonating agent in suitable reaction conditions. In order to improve the proton conduction and thermal stability of the polymer, phosphonated copolysilsesquioxanes were synthesized from diethylphosphatoethyltriethoxysilane and phenyltriethoxysilane. The CP s were characterized by infrared spectroscopy, nuclear magnetic resonance of 29Si, 1H e 13C, thermal analysis and viscometry. 10, 20 and 50% (in weight) of CP were incorporated in SPEEK with sulphonation degrees between 60-70%. The semi-interpenetrating copolysilsesquioxanes network was obtained after hydrolysis of the hybrid membrane. The hybrid membranes were also characterized according to their thermal behavior, ion exchange capacity, water uptake, proton conductivity, electrochemical performance in fuel cell and oxidative stability. The proton conductivity in the hydrated state at room temperature was determined by electrochemical impedance spectroscopy. The largest conductivity was presented by hydrolysed membranes with 20% CP produced with 90 mols Ph-TEOS and 10 mols PTES synthesized in 96 horas. With respect to plain SPEEK the proton conductivity of this membrane increased about 367%. The membranes with 20% CP produced with 80 mols Ph-TEOS and 20 mols PTES, and that membrane with 20% CP produced with 90 mols Ph- TEOS and 10 mols PTES synthesized in 24 and 96 h showed the best performance in the fuel cell at 60 °C. / A atual membrana de referência para as células a combustível com membrana trocadora de prótons (PEMFC) é o Nafion® que exibe boa estabilidade química e também alta condutividade de prótons sob condições hidratadas em temperaturas abaixo de 90°C. Entretanto, a aplicação destas membranas ainda é limitada devido à perda de condutividade em temperaturas altas e o custo elevado. Dentro deste contexto, novos materiais poliméricos têm sido estudados, como poli(aril cetonas), poli(éter-sulfona) (PES) e polibenzimidazóis (PBI). Entre eles, membranas baseadas na poli(éter-éter-cetona) (PEEK) mostraram ser muito promissoras para aplicação em PEMFC. O objetivo deste estudo foi desenvolver membranas híbridas alternativas que possuam propriedades comparáveis às membranas perfluoradas. Foram estudados neste trabalho a produção e a caracterização de membranas híbridas de poli(éter-éter-cetona) sulfonada e copolisilsesquioxanos fosfonados SPEEK/CF, e sua aplicação em células a combustível de membrana trocadora de prótons. Para este propósito foi utilizado a pós-sulfonação do PEEK com ácido sulfúrico como agente sulfonante em condições reacionais adequadas. A fim de aumentar a condutividade de prótons e estabilidade térmica do polímero, copolisilsesquioxanos fosfonados (CF) foram sintetizados a partir de dietilfosfatoetiltrietóxisilano e feniltrietóxisilano e adicionados à SPEEK. Os CF s foram caracterizados por espectroscopia na região do infravermelho, ressonância magnética nuclear de 29Si, 1H e 13C, análise térmica e viscosimetria. Razões mássicas de 10, 20 e 50% de CF foram incorporadas na SPEEK com grau de sulfonação entre 60-70%. A rede semiinterpenetrante de copolisilsesquioxano foi obtida após a hidrólise da membrana híbrida. As membranas também foram caracterizadas quanto ao seu comportamento térmico, capacidade de troca iônica, absorção de água, condutividade de prótons (σ), desempenho eletroquímico na célula a combustível e estabilidade oxidativa. A σ das membranas no estado hidratado em temperatura ambiente foi determinada por espectroscopia de impedância eletroquímica, sendo a maior apresentada pela membrana hidrolisada contendo 20% de CF produzido com 90 mols Ph-TEOS e 10 mols PTES em 96 h de reação. Em relação à SPEEK não modificada, a σ dessa membrana híbrida aumentou cerca de 367%. As membranas hidrolisadas contendo 20% de CF produzido com 80 mols Ph-TEOS e 20 mols PTES por 96 h e aquelas produzidas com 90 mols Ph-TEOS e 10 mols PTES sintetizados em 24 e 96 horas, apresentaram o melhor desempenho na célula a combustível a 60 °C.
2

Membranes conductrices ioniques pour piles à combustible / Ion conducting membranes for fuel cells

Narducci, Riccardo 15 December 2014 (has links)
Dans cette thèse, les membranes perfluorosulfoniques (PFSA) et les polymères aromatiques sulfonés (SAP) sont étudiés en vue d'une meilleure compréhension de leurs propriétés thermodynamiques, d'hydratation, mècaniques et électriques.Concernant les PFSA: 1) Préparation de membranes Nafion ayant diverses morphologies et structures (amorphe, semi-cristalline, stratifiée) et relation avec les propriétés, comme la transition vitreuse, la fusion, la conductivité protonique. 2) Divers traitements de recuit ont été appliqués et analysés par une nouvelle méthode quantitative appelé INCA (Ionomère nc analyse), utilisant aussi des agents de recuit spéciaux. Concernant les SAP: 1) Synthèse in situ de polymères réticulés et clarification du mécanisme. 2) Optimisation du degré de reticulation en vue de la meilleure conductivité protonique. 3) Obtention d'ionomères conducteurs cationiques par échange de cations du SPEEK et détermination des propriétés de ces nouveaux ionomères. / In this thesis, perfluorosulfonic acid membranes (PFSA) and sulfonated aromatic polymers (SAP) are studied to better understandtheir thermodynamic, hydration, mechanical and electrical properties. The following main points were addressed:Regarding PFSA:1) Nafion membranes with various morphology and microstructure (amorphous, semi-crystalline, layered) were prepared and the relation to the properties, such as glass and melting transitions, and proton conductivity, was established.2) Various annealing treatments were performed and analyzed by the quantitative INCA (Ionomer nc Analysis) method using also special annealing agents. Regarding SAP:1) The in situ synthesis of cross-linked polymers was studied and the mechanism was clarified. 2) The degree of cross-linking was optimized for best proton conductivity.3) Cation-conducting ionomers were obtained by cation exchange of SPEEK and the properties of these new ionomers were determined.
3

Sythesis Of Zeolite Beta For Composite Membranes

Gur, Nadiye 01 September 2006 (has links) (PDF)
In this work, zeolite Beta was synthesized experimentally in order to be used as filler in fuel cell membranes in order to assess the proton conductivity of composite membranes. Effects of the Si/Al ratio, and synthesis time on yield, relative crystallinity, crystal size, and proton conductivity were investigated. Zeolite Beta with Si/Al ratio between 10 and 30 was synthesized with a batch formulation of 2.2Na2O:1Al2O3:ySiO2:4.6(TEA)2O:tH2O (where TEA&amp / #8801 / tetraethylammonium) at 150&deg / C for 5-15 days of synthesis time. Sodium aluminate, tetraethylammonium hydroxide (TEAOH) solution, sodium hydroxide pellets (NaOH), and deionized water were used for the preparation of the batch solution. Zeolite Na-Beta was calcined and treated with sulfuric acid solution at different concentrations in order to have zeolite H-Beta. Polyetherether ketone (PEEK) was sulfonated in order to have a proton conductive membrane and than zeolite H-Beta was incorporated resulting in a composite or nanocomposite membrane. X-ray diffraction (XRD) analysis helped to understand whether the synthesized material was zeolite Beta or not. The morphology and the crystal size of the crystals were observed as a result of the scanning electron microscopy (SEM) analysis. In order to see the effect of sulfuric acid treatment on the sodium (Na) content of the zeolite Beta, inductively coupled plasma (ICP) analysis was performed. Synthesis results indicate that as Si/Al ratio and synthesis time increased the yield of zeolite Beta increased. It was observed that Si/Al ratio from 10 to 30, and synthesis time between 5 to 15 days did not affect the crystal size significantly. For the sulfonation of PEEK, sulfuric acid was used. Sulfonated polyetherether ketone (SPEEK) was dissolved in a solvent that was dimethyl acetamide (DMAC), incorporated with zeolite Beta, and then solvent was removed in the vacuum oven. The proton conductivity was measured with a 2-probe impedance spectrometer. Initial results indicate that zeolite Beta at 10 and 20 wt % loadings did not affect the proton conductivity of the SPEEK membrane at 100 % relative humidity and room temperature.
4

Synthesis of cross-linked sulfonated polysulfone and mechanical properties of SPEEK-based membranes for direct methanol fuel cells

Zieren, Shelley Marie 08 July 2011 (has links)
Direct methanol fuel cells (DMFC) are being investigated for use as low-power electrochemical energy conversion devices. These types of fuel cells can be useful for portable electronics. The polymer electrolyte membrane plays a critical role in the overall performance of DMFC. The commercially available membrane, Nafion, suffers from high methanol permeability and a resulting methanol crossover from the anode to the cathode; it is also expensive. Accordingly, alternative membrane materials, such as sulfonated hydrocarbons, are intensively pursued for DMFC. For example, sulfonated poly (ether ether ketone) (SPEEK) and sulfonated polysulfone (SPsf) are two such candidates. This thesis focuses first on a simple synthesis method for a cross-linked sulfonated polysulfone membrane. Sulfonated polysulfone (Psf) membranes, with high IEC (1.4 - 2.2 meq/g), were characterized by nuclear magnetic resonance spectroscopy (NMR), proton conductivity, and water uptake. The degree of sulfonation was calculated by NMR and verified by acid-base titration analysis. Although the membranes showed good proton conductivity, they suffered from excessive swelling at high temperatures. Furthermore, the post-sulfonation of a carboxyl-substituted polysulfone (Psf-COOH) was carried out with trimethylsilyl chlorosulfonate, and solubility issues of the Psf-COOH in chlorinated solvents led to difficulty in controlling the degree of sulfonation (DS) and in purification. Accordingly, this approach to cross-linking sulfonated polysulfone was rejected as a viable method. This thesis then focused on the investigation of the mechanical properties of acid-base blend membranes based on SPEEK and heterocycle-tethered Psf and cross-linked membranes based on SPEEK that were previously reported by our group; these membranes were known to exhibit good performance in DMFC. However, the assessment of the mechanical stability of any new membranes developed is critical for their practical viability in DMFC. Accordingly, the mechanical strength and ductility of these membranes were investigated and compared for various membrane compositions. The acid-base blend membranes investigated consisted of SPEEK (acidic polymer) and a heterocycle-tethered Psf (basic polymer); for example, blends consisting of SPEEK and amino-benzimidazole-tethered Psf (SPEEK/Psf-ABIm) and SPEEK and benzotriazole tethered Psf (SPEEK/Psf-Btraz) were investigated. The cross-linked SPEEK was made by Friedel-Craft acylation with Psf-COOH (DS = 1 or 2). The two blend membranes showed superior mechanical properties compared to Nafion 115 and comparable to plain SPEEK. The crosslinked membranes showed good mechanical properties and better strength than Nafion 115, but they were more brittle than both Nafion 115 and plain SPEEK. Further optimization of cross-linking conditions is necessary to produce the best performing membrane. / text
5

Membranas poliméricas de intercambio iónico con aplicación en pilas de combustible de temperatura intermedia

Barjola Ruiz, Arturo 03 May 2023 (has links)
Tesis por compendio / [ES] El desarrollo de membranas poliméricas capaces de actuar como electrolito en pilas de combustible tipo PEMFC a temperaturas intermedias constituye uno de los principales retos para conseguir la generación eficiente de energía por medio de estos dispositivos. Actualmente, las membranas basadas en polímeros perfluorosulfonados como el Nafion® son las más extendidas en pilas de combustible, ya que presentan una buena conductividad protónica además de ser estables mecánica y químicamente. Sin embargo, este tipo de membranas no son capaces de ofrecer buenos rendimientos por encima de 80 ¿C. En este sentido, el objetivo fundamental de esta tesis ha sido la síntesis y caracterización de membranas poliméricas que permitan su potencial utilización en el rango de temperaturas intermedias, por encima de 100 ¿C, donde la cinética de los electrodos y el transporte de protones a través de la membrana mejoran considerablemente, aumentando con ello el rendimiento de la celda. La investigación llevada a cabo se ha centrado en dos tipos de polímeros: poli(eter-eter-cetona) sulfonada (SPEEK) y polibencimidazol (PBI). Las membranas basadas en SPEEK ofrecen una elevada conductividad protónica y una buena estabilidad tanto mecánica como química. Si bien, estas propiedades dependen drásticamente de su grado de sulfonación. Así, altos grados de sulfonación resultan en muy buenas conductividades protónicas, aunque por el contrario, originan un excesivo hinchamiento de las membranas provocando un empeoramiento de sus propiedades mecánicas. Además, cuando la temperatura supera los 80 ¿C su conductividad disminuye debido a la deshidratación de la membrana. La estrategia seguida en este caso para mantener las propiedades mecánicas y la conductividad de las membranas basadas en SPEEK a temperaturas intermedias ha consistido en utilizar un polímero con un índice de intercambio catiónico no excesivamente alto (1.75 meq g-1), el cual ha sido dopado con dos tipos de compuestos organometálicos diferentes de tipo ZIF (Zeolitic Imidazolate Framework ) y con una mezcla de ambos. Este tipo de compuestos constituyen una subclase de los conocidos como Metal Organic Framework (MOF), los cuales adoptan una estructura tipo zeolita donde la parte orgánica está constituida por un anillo de imidazol y el nodo inorgánico es un metal. En este caso Zinc para el Z8 y Cobalto para el Z67. Las membranas compuestas SPEEK-ZIF mejoraron claramente las prestaciones de las de SPEEK puro a temperaturas intermedias. En base a los resultados anteriores, se seleccionaron las membranas dopadas con ZIF-67 para su evaluación en monocelda donde ofrecieron valores superiores a los de las membranas de SPEEK puro sin la adición de cargas y a los obtenidos con membranas de Nafion®117 a temperaturas superiores a 100 °C. En el caso de las membranas en base PBI, estas han sido capaces de ofrecer valores elevados de conductividad a altas temperaturas cuando eran dopadas con ácido fosfórico. Sin embargo, la pérdida del ácido por parte de la membrana (leaching) con el tiempo de operación y la degradación que este ácido provoca en los componentes de la celda, hacen que sea necesaria la utilización de otros agentes dopantes no volátiles y menos agresivos capaces de aportar al polímero la conductividad de la que carece. Los líquidos iónicos son sales fundidas a temperatura ambiente que poseen presiones de vapor despreciables y ofrecen buenas conductividades a temperaturas elevadas. En esta tesis, se prepararon por el método de casting, membranas de PBI conteniendo el líquido iónico 1-butil-3-metil imidazolio bis(trifluorometil sulfonil) imida (BMIM-NTf2) en diferentes porcentajes. Estas membranas alcanzaron a partir de un 10 % wt. de líquido iónico un valor de conductividad del orden de 10-2 S cm-1 a 160 ¿C. Señalando su potencial como electrolito polimérico basado en PBI libre de ácido fosfórico. / [CA] El desenvolupament de membranes polimèriques vàlides per a actuar com a electròlit en piles de combustible tipus PEMFC a temperatures intermèdies. Constitueix un dels reptes principals per aconseguir la generació eficient d'energia amb aquests dispositius. Actualment, les membranes basades en polímers perfluorosulfonats com el Nafion® són les més utilitzades en piles de combustible, ja que presenten una bona conductivitat protònica a més de tindre una bona estabilitat química i mecànica. Tot i això, aquest tipus de membranes no oferixen bons rendiments a temperaturas superiors a 80 ¿C. En aquest sentit, l'objectiu fonamental d'aquesta tesi ha segut la síntesi i caracterització de membranes polimèriques amb les característiques adequades per poder treballar a temperatures intermèdies, per damunt de 100 ¿C. En aquestes condicions la cinètica dels elèctrodes i el transport de protons a través de la membrana milloren considerablement augmentant amb això el rendiment de la cel·la. La investigació duta a terme s'ha centrat en dos tipus de polímers: poli(eter-eter-cetona) sulfonada (SPEEK) i polibencimidazol (PBI). Les membranes basades en SPEEK ofereixen una elevada conductivitat protònica i una bona estabilitat tant mecànica com a química. No obstant això, aquestes caracteristiques depenen dràsticament del seu grau de sulfonació. Així, alts graus de sulfonació resulten en molt bones conductivitats protòniques. Encara que per contra, originen un excessiu unflament de les membranes en aigua calenta provocant un empitjorament de les seves propietats mecàniques. A més, quan la temperatura supera els 80 ¿C la seva conductivitat baixa a causa de la deshidratació de la membrana. L'estratègia seguida en aquest cas per mantenir les propietats mecàniques i la conductivitat de les membranes basades en SPEEK a temperatures intermèdies. Ha segut partir d'un polímer amb un índex d'intercanvi catiònic no gaire alt (1.75 meq g-1). El qual ha segut dopat amb dos tipus de compostos órganometàl.lics diferents de tipus ZIF (Zeolitic Imidazolate Framework) (ZIF) i amb una barreja de tots dos. Aquest tipus de compostos constitueixen una subclasse dels coneguts com a Metal Organic Framework (MOF). Els quals adopten una estructura tipus zeolita on la part orgànica està constituïda per un anell d'imidazol i el node inorgànic és el metall. En aquest cas Zinc per al Z8 i Cobalt per al Z67. Les membranes compostes SPEEK-ZIF van millorar clarament les prestacions de les de SPEEK pur a temperatures intermèdies. En base als resultats anteriors es van seleccionar les membranes dopades amb ZIF-67 per a la seva avaluació en monocel·la on van oferir valors superiors als de les membranes de SPEEK pur sense l'addició de càrregues i als obtinguts amb membranes de Nafion®117 en les mateixes condicions a temperatures superiors a 100 °C. En el cas de les membranes en base PBI, aquestes han oferit valors elevats de conductivitat a altes temperatures, quan han segut dopades amb àcid fosfòric. Tot i això, la pèrdua de l'àcid per part de la membrana (leaching) amb el temps d'operació i la degradació que aquest àcid provoca en els components de la cel·la, fan que siga necessària la utilització d'altres agents dopants no volàtils i menys agressius capaços d'aportar al polímer conductivitat iònica. Els líquids iònics són sals foses a temperatura ambient que tenen pressions de vapor molt febles i ofereixen bones conductivitats a temperatures elevades. En aquesta tesi es van preparar pel mètode de càsting, membranes de PBI contenint el líquid iònic 1-butil-3-metil imidazoli bis(trifluorometil sulfonil) imida (BMIM-NTf2) en diferents percentatges. Aquestes membranes van assolir a partir d'un 10% wt. de líquid iònic un valor de conductivitat de l'ordre de 10-2 S cm-1 a 160 ¿C. Assenyalant el seu potencial com a electròlit polimèric basat en PBI lliure d'àcid fosfòric. / [EN] The development of polymeric membranes capable of acting as an electrolyte in a proton exchange membrane fuel cells (PEMFC) at intermediate temperatures. It constitutes one of the main challenges to achieve efficient energy generation through these kinds of devices. Currently, membranes based on perfluorosulfonated polymers such as Nafion® are the most widespread in fuel cells, since they have good proton conductivity as well as being mechanically and chemically stable. However, these types of membranes are not capable of offering good performance above 80 ¿C. In this sense, the main objective of this thesis has been the synthesis and characterization of polymeric membranes with potential use in the range of intermediate temperatures, above 100 ¿C, where the kinetics of the electrodes and the transport of protons through of the membrane and the performance of the cell are greatly improved. The research carried out has focused on two types of polymers: sulfonated poly(ether-ether-ketone) (SPEEK) and polybenzimidazole (PBI). SPEEK-based membranes offer high proton conductivity and good mechanical and chemical stability. However, their properties depend dramatically on its degree of sulfonation. Thus, high degrees of sulfonation result in excellent proton conductivities. On the other hand, the large amount of sulphonic groups in the membrane cause an excessive swelling in hot water, leading to a worsening of their mechanical properties, even reaching its dissolution. Furthermore, as also happens with perfluorosulfonated membranes, when the temperature is increased above 80 ¿C their proton conductivity decreases due to membrane dehydration. Focused on maintain the mechanical properties and conductivity of SPEEK-based membranes at intermediate temperatures. Membranes have been prepared from a polymer with a not excessively high cation exchange rate (1.75 meq g-1). Which has been doped with two different ZIF-type (Zeolitic Imidazolate Framework) organometallic compounds and with a mixture of both. This type of compounds constitutes a subclass of those known as Metal Organic Framework (MOF). Which adopt a zeolite-type structure where the organic part is made up of an imidazole ring and the inorganic node is the metal. In this case Zinc for Z8 and Cobalt for Z67. SPEEK-ZIF. Composite membranes clearly improved the performance of pure SPEEK membranes at intermediate tempe-ratures. Based on the previous results, the membranes doped with ZIF-67 were selected for their evaluation in a single fuel cell, where they offered higher values than those of the pure SPEEK membranes without the addition of fillers and those obtained with membranes of Nafion®117 under the same conditions at temperatures above 100 °C. PBI based membranes, have been capable of offering high conductivity values at high temperatures, when they have been doped with phosphoric acid. However, the loss of acid by the membrane (leaching) with the operation time and the degradation that this acid causes in the cell components. In this sense, it is necessary to explore the use of other non-volatile and less aggressive doping agents capable of providing ionic conductivity to the polymer. Ionic liquids are molten salts at room temperature that have negligible vapor pressures and offer good conductivities at elevated temperatures. In this thesis, PBI membranes containing the ionic liquid 1-butyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide (BMIM-NTf2) at different percentages were prepared by the casting method. These membranes containing 10 wt.% of ionic liquid reached a conductivity value in the range of 10-2 S cm-1 at 160 ¿C. Noting its potential as a phosphoric acid-free PBI-based polymeric electrolyte. / This work was sponsored by the Ministerio de Economia y Competitividad (MINECO) under the project ENE/2015-69203-R. The authors acknowledge the Electron Microscopy Service from Universitat Politècnica de València for the use of instruments and staff assistance. / Barjola Ruiz, A. (2023). Membranas poliméricas de intercambio iónico con aplicación en pilas de combustible de temperatura intermedia [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193081 / Compendio
6

Development And Characterization Of Composite Proton Exchange Membranes For Fuel Cell Applications

Akay, Ramiz Gultekin 01 February 2008 (has links) (PDF)
Intensive research on development of alternative low cost, high temperature membranes for proton exchange membrane (PEM) fuel cells is going on because of the well-known limitations of industry standard perfluoro-sulfonic acid (PFSA) membranes. To overcome these limitations such as the decrease in performance at high temperatures (&gt / 80 0C) and high cost, non-fluorinated aromatic hydrocarbon based polymers are attractive. The objective of this study is to develop alternative membranes that possess comparable properties with PFSA membranes at a lower cost. For this purpose post-sulfonation studies of commercially available engineering thermoplastics, polyether-ether ketone (PEEK) and polyether-sulfone (PES), were performed by using suitable sulfonating agents and conditions. Post sulfonated polymers were characterized with proton nuclear magnetic resonance spectroscopy (H+-NMR), sulfur elemental analysis and titration to calculate the degree of sulfonation (DS) values and with TGA and DSC for thermal stability and glass transition temperature (Tg). Chemical stabilities were evaluated by hydrogen v peroxide tests. Proton conductivities of sulfonated PEEK (SPEEK) measured by electrochemical impedance spectroscopy (EIS) were observed to increase linearly with degree of sulfonation (DS). However, above a certain DS SPEEK loses its mechanical stability significantly with excessive swelling which leads to deteriorations in mechanical stability. Therefore, DS of 50-70% were used for the fabrication of composite membranes. To improve mechanical stability, SPEEK polymers were blended with more stable polymers, polyether-sulfone (PES) or in its sulfonated form (SPES) or with polybenzimidazole (PBI). In addition, the composite approach, which involves the incorporation of various inorganic fillers such as zeolite beta, TiO2, montmorrilonite (MMT), heteropolyacids (HPA), was used for further improvement of proton conductivity. Among the composite membranes 20% TPA/SPEEK (DS=68) composites conductivity value exceeded that of Nafion&lsquo / s at room temperature. Effects of various parameters during the fabrication process such as the filler type and loading, DS of sulfonated polymer, casting solvents, and thermal and chemical treatment were also investigated and optimized. Various blend/composite membranes were fabricated with solvent casting method, and characterized for their proton conductivity, chemical/thermal stability and for evaluating their voltage/current performance at various temperatures in a single cell setup. Chemically and thermo-hydrolytically stable composite/blend membranes such as 25% tungstophosphoric acid (TPA)/PBI(5%)/SPEEK (DS=68) with good single cell performances at 800C were developed (~450 mA/cm2 at 0.5 V). The performance of the hydrolytically stable composite/blend membrane prepared with SPEEK (DS=59) / 5% PBI / and 10% TiO2 increased appreciably when the temperature was raised from 80 0C to 90 0C while the performance of Nafion decreases sharply after 80 0C. Methanol permeability studies were also performed for investigating the potential of fabricated blend/composite membranes for direct methanol fuel cell (DMFC) use. Selectivities (conductivity/methanol permeability) vi greater than Nafion 112 (S=7.3x107) for DMFC were observed for composite/blend membranes such as 10% TiO2/10% PES blend with SPEEK (DS=68) with a selectivity of 9.3x107. The factors that affect proton conductivity measurements were investigated and equivalent circuit analysis was performed with results obtained by electrochemical impedance spectroscopy (EIS). The choice of the conductivity cell (electrodes, cell geometry) and the method (2-probe vs 4-probe) were shown to affect the conductivity analysis. A systematic development and characterization route was established and it was shown that by optimizing proton conductivity and thermal/chemical stability with blending/composite approaches it is possible to produce novel high performance proton exchange membranes for fuel cell applications.
7

Elaboration de membranes pour piles à combustible à architecture réseaux (semi-)interpénétrés de polymères / New interpenetrating polymer network membranes as proton exchange membrane fuel cells (PEMFC)

Delhorbe, Virginie 18 July 2011 (has links)
Les membranes polymères utilisées actuellement dans les piles à combustible voient leurs performances diminuer à haute température (T > 90°C) et à faible humidité relative (HR < 50%) [1]. Cette diminution est principalement liée aux pertes des propriétés mécaniques et de conduction dans ces conditions. Afin de remédier à ces inconvénients, des membranes originales présentant une architecture de réseaux (semi-)interpénétrés de polymères [2] ((semi-)RIP) dans lesquelles un réseau hydrophobe est associé à un réseau hydrophile, ont été développées dans le cadre du projet ANR PAN-H « AMEIRICC ».Ces membranes sont constituées d'un réseau fluoré assurant la tenue mécanique et d'un réseau polyélectrolyte sulfoné assurant la conduction protonique du matériau, chacun des réseaux étant issu de différents précurseurs fournis par l'IAM et le LMOPS. Après la réaction de polymérisation/réticulation des deux réseaux, les matériaux sont caractérisés afin de réaliser un retour rapide sur leur synthèse et d'optimiser cette dernière pour parvenir à un matériau présentant les principales propriétés recherchées (conductivité protonique, stabilité thermique et chimique, principalement). Une fois la synthèse optimisée, des premiers matériaux ont été fournis au LMPB, au SPrAM et au LITEN pour la validation des membranes sélectionnées. Les propriétés structurales et les valeurs de conductivité des matériaux ont permis de conclure que les (semi-)RIP présentent une morphologie similaire à celle décrite pour le Nafion dans laquelle la phase fluorée et la phase conductrice ionique sont co-continues. Plusieurs séries de ces membranes ont ensuite été réalisées en modifiant la composition chimique afin d'étudier la variation des propriétés des matériaux obtenus. Enfin, les premiers tests en pile à combustible de ces membranes originales se sont révélés prometteurs.[1] R. Borup, J. Meyers, B. Pivovar, Chem. Rev. 107 (2007) 3904.[2] L. H. Sperling and V. Mishra. The current status of interpenetrating polymer networks. In: Kim SC, Sperling LH, editors. IPNs around the world: science and engineering. New York: Wiley; 1997: p. 1-25. / The polymer membranes currently used in fuel cells are reducing their performance at high temperature (T > 90°C) and low relative humidity (RH < 50%) [1]. This decrease is mainly due to loss of mechanical properties and conduction in these conditions. To overcome these drawbacks, unique membranes having an architecture (semi-) interpenetrating polymer network [2] ((semi-) IPN) in which a hydrophobic network is associated with a hydrophilic network, were developed under PAN-H “AMEIRICC” ANR Project.These membranes consist of fluorinated network ensuring the mechanical and sulfonated polyelectrolyte network ensuring the proton conduction of material, each network being derived from different precursors provided by IAM and LMOPS. After the polymerization/cross linking reaction of the two systems, materials are characterized to carry out a rapid return on their synthesis and optimize it to achieve a material with the main properties (proton conductivity, thermal and chemical stability, primarily). Once the synthesis is optimized, the first materials were provided to LMPB, SPrAM and LITEN for validation of selected membranes.The structural properties and conductivity values of materials led to the conclusion that (semi-) IPN have a similar morphology to that described for the Nafion in which the fluorous phase and the ionic conducting phase are co-continuous.Then several series of these membranes were conducted by changing the chemical composition in order to study the variation of obtained material properties. Finally, the first fuel cell test of original membranes have shown promise.[1] R. Borup, J. Meyers, B. Pivovar, Chem. Rev. 107 (2007) 3904.[2] L. H. Sperling and V. Mishra. The current status of interpenetrating polymer networks. In: Kim SC, Sperling LH, editors. IPNs around the world: science and engineering. New York: Wiley; 1997: p. 1-25.
8

Application of Nanofibres in Polymer Composite Membranes for Direct Methanol Fuel Cells

Mollá Romano, Sergio 09 December 2015 (has links)
Tesis por compendio / [EN] Direct methanol fuel cells are feasible devices for efficient electrochemical power generation if some issues can be solved regarding both electrodes and membranes. The research carried out in this Ph.D. thesis has particularly focused on the concerns associated with the membranes. Nafion is the most standard fuel cell membrane material due to its high proton conductivity and exceptional chemical and mechanical stability. However, it suffers from a considerably high methanol permeability and a limited operating temperature (< 80 ºC). The first aspect was addressed with the use of PVA nanofibres and the second one replacing Nafion with SPEEK-based polymers. Composite membranes of Nafion with PVA nanofibres, surface functionalised with sulfonic acid groups, exhibited lower methanol permeabilities due to the intrinsic barrier property of PVA, although proton conductivity was also affected as a result of the non-conducting behaviour of the bulk PVA phase. Remarkably, the nanofibres provided strong mechanical reinforcement which enabled the preparation of low thickness membranes (< 20 micrometres) with reduced ohmic losses, thus counteracting their lower proton conductivities. SPEEK-based membranes were examined for DMFC operation within the intermediate temperature range of 80-140 ºC, in which sluggish electrochemical reactions at the electrodes are accelerated and proton conductivity activated. SPEEK was blended and crosslinked with PVA and PVB polymers for avoiding its dissolution in hot water conditions. SPEEK-PVA compositions showed practical proton conductivities and SPEEK-PVB blends presented very low methanol permeabilities. Nanocomposite membranes composed of SPEEK-30%PVB nanofibres embedded in a SPEEK-35%PVA matrix were prepared and characterised. A nanocomposite membrane crosslinked at 120 ºC revealed promising results for DMFCs operating at intermediate temperatures. Electrospinning is concluded to be a suitable technique for obtaining polymer nanofibre mats intended for advanced composite membranes with improved characteristics and fuel cell performances. / [ES] Las pilas de combustible de metanol directo son dispositivos factibles para la generación electroquímica eficiente de energía eléctrica si se pueden solucionar algunas cuestiones relacionadas tanto con los electrodos como las membranas. La investigación llevada a cabo en esta tesis doctoral se ha centrado particularmente en los problemas asociados con las membranas. Nafion es el material de membrana más común para pilas de combustible debido a su alta conductividad protónica y excepcional estabilidad química y mecánica. Sin embargo, padece una considerablemente alta permeabilidad al metanol y una limitada temperatura de operación (< 80 ºC). El primer aspecto se abordó con el uso de nanofibras de PVA y el segundo reemplazando Nafion con polímeros basados en SPEEK. Membranas compuestas de Nafion con nanofibras de PVA, funcionalizadas en su superficie con grupos ácidos sulfónicos, exhibieron menores permeabilidades al metanol debido a la propiedad barrera intrínseca del PVA, aunque la conductividad protónica también se vio afectada como resultado del comportamiento global no conductor de la fase de PVA. Remarcablemente, las nanofibras proporcionaron un refuerzo mecánico fuerte que permitió la preparación de membranas de bajo espesor (< 20 micrómetros) con unas pérdidas óhmicas reducidas, así contrarrestando sus menores conductividades protónicas. Se examinaron membranas basadas en SPEEK para la operación de pilas de combustible de metanol directo dentro del rango intermedio de temperaturas entre 80-140 ºC, en el que las lentas reacciones electroquímicas en los electrodos se aceleran y la conductividad protónica se activa. El SPEEK se combinó y entrecruzó con los polímeros de PVA y PVB para evitar su disolución en condiciones de agua caliente. Las composiciones de SPEEK-PVA mostraron conductividades protónicas funcionales y las mezclas de SPEEK-PVB presentaron permeabilidades al metanol muy bajas. Se prepararon y caracterizaron membranas nanocompuestas constituidas por nanofibras de SPEEK-30%PVB embebidas en una matriz de SPEEK-35%PVA. Una membrana nanocompuesta entrecruzada a 120 ºC reveló resultados prometedores para pilas de combustible de metanol directo operando a temperaturas intermedias. Se puede concluir que la electrohilatura es una técnica apropiada para la obtención de mallas de nanofibras poliméricas destinadas a membranas compuestas avanzadas con características y rendimientos en pilas de combustible mejorados. / [CA] Les piles de combustible de metanol directe són dispositius factibles per a la generació electroquímica eficient d'energia elèctrica si es poden solucionar algunes qüestions relacionades tant amb els elèctrodes com les membranes. La investigació duta a terme en esta tesi doctoral s'ha centrat particularment en els problemes associats amb les membranes. Nafion és el material de membrana més comú per a piles de combustible a causa de la seua alta conductivitat protònica i excepcional estabilitat química i mecànica. No obstant això, patix una considerablement alta permeabilitat al metanol i una limitada temperatura d'operació (< 80 ºC). El primer aspecte es va abordar amb l'ús de nanofibres de PVA i el segon reemplaçant Nafion amb polímers basats en SPEEK. Membranes compostes de Nafion amb nanofibres de PVA, funcionalizades en la seua superfície amb grups àcids sulfónics, van exhibir menors permeabilitats al metanol a causa de la propietat barrera intrínseca del PVA, encara que la conductivitat protònica també es va veure afectada com resultat del comportament global no conductor de la fase de PVA. Remarcablement, les nanofibres van proporcionar un reforç mecànic fort que va permetre la preparació de membranes de baixa grossària (< 20 micròmetres) amb unes pèrdues òhmiques reduïdes, així contrarestant les seues menors conductivitats protòniques. Es van examinar membranes basades en SPEEK per a l'operació de piles de combustible de metanol directe dins del rang intermedi de temperatures entre 80-140 ºC, en el que les lentes reaccions electroquímiques en els elèctrodes s'acceleren i la conductivitat protònica s'activa. El SPEEK es va combinar i va entrecreuar amb els polímers de PVA i PVB per a evitar la seua dissolució en condicions d'aigua calenta. Les composicions de SPEEK-PVA van mostrar conductivitats protòniques funcionals i les mescles de SPEEK-PVB van presentar permeabilitats al metanol molt baixes. Es van preparar i caracteritzar membranes nanocompostes constituïdes per nanofibres de SPEEK-30%PVB embegudes en una matriu de SPEEK-35%PVA. Una membrana nanocomposta entrecreuada a 120 ºC va revelar resultats prometedors per a piles de combustible de metanol directe operand a temperatures intermèdies. Es pot concloure que l'electrofilatura és una tècnica apropiada per a l'obtenció de malles de nanofibres polimériques destinades a membranes compostes avançades amb característiques i rendiments en piles de combustible millorats. / Mollá Romano, S. (2015). Application of Nanofibres in Polymer Composite Membranes for Direct Methanol Fuel Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58611 / TESIS / Premios Extraordinarios de tesis doctorales / Compendio

Page generated in 0.0453 seconds