• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Produção de microalgas e caracterização de sua composição protêica e lipídica via espectrometria de massas. / Production of microalgae and characterization of their proteic and lipidic composition by mass spectrometry.

Andrade, Lidiane Maria de 19 September 2014 (has links)
As mudanças climáticas associadas às atividades humana são devidas principalmente às emissões de CO2 na atmosfera provenientes da queima de combustíveis de origem fóssil. Desta forma, faz-se necessária a substituição dessas fontes fósseis de geração de energia, por fontes renováveis. Dentre as alternativas de fontes renováveis, podemos destacar os biocombustíveis produzidos a partir de microalgas, as quais apresentam composição rica em óleos e proteínas. Um dos grandes desafios encontrados na conversão de biomassa em biocombustíveis é a caracterização detalhada das microalgas. A identificação de espécies através da espectrometria de massas com Ionização/Dessorção à Laser Assistida por Matriz acoplada a analisador por tempo de vôo (MALDI-TOF-MS) utilizada na análise de perfil de proteínas de micro-organismos, e posterior rápida identificação por comparação com os padrões armazenados em bancos de dados (fingerprint) tem se sobressaído. Existem poucos trabalhos na literatura abordando a identificação de espécies de microalgas utilizando a técnica de MALDI-TOF-MS e nenhum trabalho abordando a análise a partir do uso de células de microalgas liofilizadas. Desta forma, nesse trabalho foi estudada a influência de diversos parâmetros tais como placa, modo de análise, valor de PIE, valor de IS2, matriz e solvente de matriz e amostra nos espectros de massas do tipo MALDI-TOF-MS para análise do perfil proteico de células liofilizadas das espécies de microalgas Chlorella vulgaris, Chlorella sp., Desmodesmus sp., Monoraphidium sp. e Oocystis sp. Primeiramente, os cultivos foram realizados em um sistema de agitador orbital otimizado de tal maneira que todas as posições apresentassem as mesmas condições. Após os cultivos, as células foram secas para posterior análise de espectrometria de massas. Para determinação da metodologia que fornecesse os melhores espectros de massas, foram avaliados, aleatoriamente, 3 parâmetros: número de íons (P1), relação sinal/ruído do pico base (P2) e intensidade do pico base (P3). Foi observado que para a maioria das amostras de microalgas, os parâmetros que mais influenciaram na obtenção de espectros de massas do tipo MALDI-TOF bem resolvidos foram a placa, o modo de análise, valor de PIE, valor de IS2 e a matriz. As variações obtidas nos espectros de massas, quando utilizados diferentes solventes tanto para a matriz quanto para a amostra, bem como a adição de isopropanol com o objetivo de melhorar a distribuição da matriz sDHB na placa de amostragem, não foram tão significativas como as observadas para os outros parâmetros avaliados nesse estudo. Como conclusão, o uso da matriz sDHB, solvente TA50 para amostra e matriz, análise na placa polished sob as condições de análise PIE 100ns, IS2 23kV mostraram-se muito mais efetivos para a análise de proteínas a partir de amostras de microalgas liofilizadas. A análise dos lipídios apresentou uma distribuição predominante dos ácidos graxos C16:0, C18:2 e C18:0 para os cultivos de 12 dias e C16:0, C18:2 e C22:6 para os cultivos de 8 dias. Entretanto, as proporções de C22:6 e C18:2 aumentaram para os cultivos de 8 dias. Dessa forma, as espécies de microalgas Chlorella vulgaris., Chlorella sp., Monoraphidium sp. e Oocystis sp. cultivadas por 8 dias podem ser convertidas em biocombustível por apresentarem ácidos graxos entre 14 e 18 carbonos e em sua composição. / Climate change associated to human activities are mainly due to CO&#8322 emissions from combustion of fossil fuels in the atmosphere. Thus, it is necessary to replace these fossil sources of energy generation for renewable sources. Among the alternative of renewable sources, biofuels derived from microalgae is am potential alternative, since microalgae present in their composition fatty acids and proteins. Characterization of microalgae is one of the challenges in the conversion of their biomass into biofuels. The microorganism species identification by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) thought the analysis of protein profile and subsequent fast identification by comparison with the standard protein profile (fingerprint) in the database has been outstanding. There are few studies in the literature about the identification of microalgae species using MALDI-TOF-MS technique and there is no one using cells of lyophilized microalgae. Thus, in this work was studied the influence of many parameters such as target, analysis mode, PIE, IS2 value, matrix, matrix solvent and sample solvent in the MALDI-TOF mass spectra for analysis of protein profile of lyophilized microalgae cells for the species Chlorella vulgaris cells, Chlorella sp., Desmodesmus sp., Monoraphidium sp. and Oocystis sp. Cultivations were carried out using an optimized shaker system, where all positions presented the same conditions. After the cultivation, the cells were dried for subsequent mass spectrometric analysis. To achieve the best mass spectra profile, 3 parameters were arbitrarily evaluated: number of ions (P1), base peak signal/noise ratio (P2) and base peak intensity (P3). It was observed for most microalgae samples, MALDI-TOF mass spectra profile were most influenced by target, analysis mode, PIE value, IS2 value and the matrix. Variations in the mass spectra obtained when different solvents were used (for matrix and sample) as well as the addition of isopropanol in order to improve the distribution of sDHB matrix on the spot, were not significant as that observed for the other parameters. In conclusion, the use of sDHB matrix, TA50 solvent for sample and matrix, analysis in polished target plate under the following analysis conditions: a PIE 100ns, a IS2 23kV, provided to be more effective for the analysis of protein from lyophilized microalgae cells. Lipid analysis of 12 days cultivated microalgae showed a predominant distribution of the C16:0, C18:2 and C18:0. The 8 days cultivation presented a distribution of C16:0, C18:2 and C22:6, but with C22:6 e C18:2 in a higher proportion. Since biofuel are produced by using the C14-C18 fatty acid contained in their composition, 8 days cultivation showed to be most effective for this purpose.
12

Tension-Dependent Formation of Stress Fibers in Fibroblasts : A Study Using Semi-Intact Cells

HIRATA, Hiroaki, TATSUMI, Hitoshi, SOKABE, Masahiro 12 1900 (has links)
No description available.
13

Escherichia coli O157:H7 and Salmonella Typhimurium Risk Assessment during the Production of Marinated Beef Inside Skirts and Tri-tip Roasts

Muras, Tiffany Marie 2009 August 1900 (has links)
This study was conducted to determine the survival of Escherichia coli O157:H7 and Salmonella Typhimurium in marinade that was used to vacuum tumble beef inside skirts and beef tri-tip roasts. The depth of penetration of each microorganism into the individual meat products, and the survival of these microorganisms in the products as well as marinade stored over time were evaluated. Two commercial marinades were used, Reo TAMU Fajita Marinade and Legg's Cajun Style Marinade. Eighteen beef inside skirts and 18 tri-tips were used during this study. Both inside skirts and tri-tips were vacuum tumbled for a total of 1 h. Samples of products were tested immediately following tumbling (day 0), or were vacuum packaged and stored in the cooler (approximately 2 degrees C) to be tested 7 and 14 days following tumbling. Samples of the spent marinade were taken and tested initially following tumbling (day 0), and were also stored in a cooler and tested 3 and 7 days after the marinade was used. The results of the study showed that with both marinades S. Typhimurium and E. coli O157:H7 penetrated throughout the skirt meat. After having been stored for 7 days following tumbling, the log value of both S. Typhimurium and E. coli O157:H7 decreased in the meat. After 14 days of storage following tumbling, the log value of both S. Typhimurium and E. coli O157:H7 continued to decrease; however, both pathogens were still detectable. The penetration of the pathogens in the tri-tip roast varied depending on the thickness of the roast. The thicker roasts had undetectable levels of both pathogens in the geometric center; however, the thinner tri-tip roasts had detectable levels at the geometric center. The spent marinade tested on day 0, 3, and 7 showed that the microorganisms were able to survive in the marinade at refrigerated temperatures. The results of this study demonstrated that pathogens may penetrate into the interior of beef skirts and tri-tips during vacuum tumbling with contaminated marinade, and that pathogens survive during refrigerated storage of spent marinade. Industry should consider these data when evaluating potential food safety risks associated with the production of vacuum tumbling beef products.
14

Characterization and Germination of 13C Labeled Seeds by Comprehensive Multiphase NMR Spectroscopy

Lam, Leayen 18 March 2014 (has links)
Seeds are complex entities, within which the intricate processes of germination and early growth occur. We describe here a novel technique of our group in 2012 which is capable of simultaneous solution-, gel-, and solid-state analysis. CMP-NMR was applied to intact seeds where all components are studied and differentiated in situ. Characterization, germination and early growth of seeds were studied by variety of 1D and 2D 1H and 13C CMP-NMR experiments. Various metabolites, lipids, carbohydrate biopolymers and structural carbohydrates were first identified and further studied in germination and early growth stages. This research demonstrates the utility of CMP- NMR as a powerful tool to better understand the composition of seeds and processes underlying early seed growth.
15

Characterization and Germination of 13C Labeled Seeds by Comprehensive Multiphase NMR Spectroscopy

Lam, Leayen 18 March 2014 (has links)
Seeds are complex entities, within which the intricate processes of germination and early growth occur. We describe here a novel technique of our group in 2012 which is capable of simultaneous solution-, gel-, and solid-state analysis. CMP-NMR was applied to intact seeds where all components are studied and differentiated in situ. Characterization, germination and early growth of seeds were studied by variety of 1D and 2D 1H and 13C CMP-NMR experiments. Various metabolites, lipids, carbohydrate biopolymers and structural carbohydrates were first identified and further studied in germination and early growth stages. This research demonstrates the utility of CMP- NMR as a powerful tool to better understand the composition of seeds and processes underlying early seed growth.
16

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

Bewick, Robert P. 07 January 2014 (has links)
The shear rupture of massive (intact non-jointed) brittle rock in underground high stress mines occurs under a variety of different boundary conditions ranging from constant stress (no resistance to deformation) to constant stiffness (resistance to deformation). While a variety of boundary conditions exist, the shear rupture of massive rock in the brittle field is typically studied under constant stress boundary conditions. According to the theory, the fracturing processes leading to shear rupture zone creation occur at or near peak strength with a shear rupture surface created in the post-peak region of the stress-strain curve. However, there is evidence suggesting that shear rupture zone creation can occur pre-peak. Limited studies of shear rupture in brittle rock indicate pre-peak shear rupture zone creation under constant stiffness boundary conditions. This suggests that the boundary condition influences the shear rupture zone creation characteristics. In this thesis, shear rupture zone creation in brittle rock is investigated in direct shear under constant normal stress and normal stiffness boundary conditions. It is hypothesized that the boundary condition under which a shear rupture zone is created influences its characteristics (i.e., shear rupture zone geometry, load-displacement response, shear rupture zone creation relative to the load-displacement curve, and peak and ultimate strengths). In other words, it is proposed that the characteristics of a shear rupture zone are not only a function of the rock or rock mass properties but the boundary conditions under which the rupture zone is created. The hypothesis is tested and proven through a series of simulations using a two dimensional particle based Distinct Element Method (DEM) and its embedded grain based method. The understanding gained from these simulations is then used in the analysis and re-interpretation of rupture zone creation in two mine pillars. This is completed to show the value and practical application of the improved understanding gained from the simulations. The re-interpretation of these case histories suggests that one pillar ruptured predominately under a constant stress boundary condition while the other ruptured under a boundary condition changing from stiffness to stress control.
17

Methods for measurements of chlorophyll fluorescence, luminescence and photosynthesis in intact plants

Sundbom, Erik January 1981 (has links)
Methods were developed to study delayed light emission (luminiscence) and fluorescence changes in intact leaves of plants. Delayed light emission, detected from plants in darkness, was used to produce images of the plant leaves. The procedure was termed "phytoluminography". The use of the method is suggested for dia- nostic purposes at early stages of disturbances of the leaf tissues, not detectable with the naked eye. The delayed light emission is associated with the photochemistry of photosystem II and the light induced conversion and storage of energy in the thylakoid membrane system of chloroplasts. Fluorescence yield changes were induced by lowering temperature between 20 C and -20 C. The temperature induced fluorescence changes in leaves parallel the temperature induced changes in isolated chloroplasts in reaction preparations mediating photosynthetic electron transport from endogenous water splitting to added NADP. At above freezing temperatures, lowering the temperature at a constant rate of 1 C per minute caused supressed electron transport and increased fluorescence yield which were linearely dependent on the temperature change in frost resistent plants. Repeated freeze-thaw cycles between 20 °C and -20 °C induced variable fluorescence yield changes which were gradually depleated to F0 or Fm when the electron transport was injuried on the oxidizing or on the reduzing side of photosystem II, respectively. The temperature induced fluorescence changes were used to characterize plants with different ability to withstand freezing temperatures. The method also discriminates between plants of different frost resistance, and the method was used in screening for frost tolerance. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1981, härtill 5 uppsatser.</p> / digitalisering@umu
18

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

Bewick, Robert P. 07 January 2014 (has links)
The shear rupture of massive (intact non-jointed) brittle rock in underground high stress mines occurs under a variety of different boundary conditions ranging from constant stress (no resistance to deformation) to constant stiffness (resistance to deformation). While a variety of boundary conditions exist, the shear rupture of massive rock in the brittle field is typically studied under constant stress boundary conditions. According to the theory, the fracturing processes leading to shear rupture zone creation occur at or near peak strength with a shear rupture surface created in the post-peak region of the stress-strain curve. However, there is evidence suggesting that shear rupture zone creation can occur pre-peak. Limited studies of shear rupture in brittle rock indicate pre-peak shear rupture zone creation under constant stiffness boundary conditions. This suggests that the boundary condition influences the shear rupture zone creation characteristics. In this thesis, shear rupture zone creation in brittle rock is investigated in direct shear under constant normal stress and normal stiffness boundary conditions. It is hypothesized that the boundary condition under which a shear rupture zone is created influences its characteristics (i.e., shear rupture zone geometry, load-displacement response, shear rupture zone creation relative to the load-displacement curve, and peak and ultimate strengths). In other words, it is proposed that the characteristics of a shear rupture zone are not only a function of the rock or rock mass properties but the boundary conditions under which the rupture zone is created. The hypothesis is tested and proven through a series of simulations using a two dimensional particle based Distinct Element Method (DEM) and its embedded grain based method. The understanding gained from these simulations is then used in the analysis and re-interpretation of rupture zone creation in two mine pillars. This is completed to show the value and practical application of the improved understanding gained from the simulations. The re-interpretation of these case histories suggests that one pillar ruptured predominately under a constant stress boundary condition while the other ruptured under a boundary condition changing from stiffness to stress control.
19

Produção de microalgas e caracterização de sua composição protêica e lipídica via espectrometria de massas. / Production of microalgae and characterization of their proteic and lipidic composition by mass spectrometry.

Lidiane Maria de Andrade 19 September 2014 (has links)
As mudanças climáticas associadas às atividades humana são devidas principalmente às emissões de CO2 na atmosfera provenientes da queima de combustíveis de origem fóssil. Desta forma, faz-se necessária a substituição dessas fontes fósseis de geração de energia, por fontes renováveis. Dentre as alternativas de fontes renováveis, podemos destacar os biocombustíveis produzidos a partir de microalgas, as quais apresentam composição rica em óleos e proteínas. Um dos grandes desafios encontrados na conversão de biomassa em biocombustíveis é a caracterização detalhada das microalgas. A identificação de espécies através da espectrometria de massas com Ionização/Dessorção à Laser Assistida por Matriz acoplada a analisador por tempo de vôo (MALDI-TOF-MS) utilizada na análise de perfil de proteínas de micro-organismos, e posterior rápida identificação por comparação com os padrões armazenados em bancos de dados (fingerprint) tem se sobressaído. Existem poucos trabalhos na literatura abordando a identificação de espécies de microalgas utilizando a técnica de MALDI-TOF-MS e nenhum trabalho abordando a análise a partir do uso de células de microalgas liofilizadas. Desta forma, nesse trabalho foi estudada a influência de diversos parâmetros tais como placa, modo de análise, valor de PIE, valor de IS2, matriz e solvente de matriz e amostra nos espectros de massas do tipo MALDI-TOF-MS para análise do perfil proteico de células liofilizadas das espécies de microalgas Chlorella vulgaris, Chlorella sp., Desmodesmus sp., Monoraphidium sp. e Oocystis sp. Primeiramente, os cultivos foram realizados em um sistema de agitador orbital otimizado de tal maneira que todas as posições apresentassem as mesmas condições. Após os cultivos, as células foram secas para posterior análise de espectrometria de massas. Para determinação da metodologia que fornecesse os melhores espectros de massas, foram avaliados, aleatoriamente, 3 parâmetros: número de íons (P1), relação sinal/ruído do pico base (P2) e intensidade do pico base (P3). Foi observado que para a maioria das amostras de microalgas, os parâmetros que mais influenciaram na obtenção de espectros de massas do tipo MALDI-TOF bem resolvidos foram a placa, o modo de análise, valor de PIE, valor de IS2 e a matriz. As variações obtidas nos espectros de massas, quando utilizados diferentes solventes tanto para a matriz quanto para a amostra, bem como a adição de isopropanol com o objetivo de melhorar a distribuição da matriz sDHB na placa de amostragem, não foram tão significativas como as observadas para os outros parâmetros avaliados nesse estudo. Como conclusão, o uso da matriz sDHB, solvente TA50 para amostra e matriz, análise na placa polished sob as condições de análise PIE 100ns, IS2 23kV mostraram-se muito mais efetivos para a análise de proteínas a partir de amostras de microalgas liofilizadas. A análise dos lipídios apresentou uma distribuição predominante dos ácidos graxos C16:0, C18:2 e C18:0 para os cultivos de 12 dias e C16:0, C18:2 e C22:6 para os cultivos de 8 dias. Entretanto, as proporções de C22:6 e C18:2 aumentaram para os cultivos de 8 dias. Dessa forma, as espécies de microalgas Chlorella vulgaris., Chlorella sp., Monoraphidium sp. e Oocystis sp. cultivadas por 8 dias podem ser convertidas em biocombustível por apresentarem ácidos graxos entre 14 e 18 carbonos e em sua composição. / Climate change associated to human activities are mainly due to CO&#8322 emissions from combustion of fossil fuels in the atmosphere. Thus, it is necessary to replace these fossil sources of energy generation for renewable sources. Among the alternative of renewable sources, biofuels derived from microalgae is am potential alternative, since microalgae present in their composition fatty acids and proteins. Characterization of microalgae is one of the challenges in the conversion of their biomass into biofuels. The microorganism species identification by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) thought the analysis of protein profile and subsequent fast identification by comparison with the standard protein profile (fingerprint) in the database has been outstanding. There are few studies in the literature about the identification of microalgae species using MALDI-TOF-MS technique and there is no one using cells of lyophilized microalgae. Thus, in this work was studied the influence of many parameters such as target, analysis mode, PIE, IS2 value, matrix, matrix solvent and sample solvent in the MALDI-TOF mass spectra for analysis of protein profile of lyophilized microalgae cells for the species Chlorella vulgaris cells, Chlorella sp., Desmodesmus sp., Monoraphidium sp. and Oocystis sp. Cultivations were carried out using an optimized shaker system, where all positions presented the same conditions. After the cultivation, the cells were dried for subsequent mass spectrometric analysis. To achieve the best mass spectra profile, 3 parameters were arbitrarily evaluated: number of ions (P1), base peak signal/noise ratio (P2) and base peak intensity (P3). It was observed for most microalgae samples, MALDI-TOF mass spectra profile were most influenced by target, analysis mode, PIE value, IS2 value and the matrix. Variations in the mass spectra obtained when different solvents were used (for matrix and sample) as well as the addition of isopropanol in order to improve the distribution of sDHB matrix on the spot, were not significant as that observed for the other parameters. In conclusion, the use of sDHB matrix, TA50 solvent for sample and matrix, analysis in polished target plate under the following analysis conditions: a PIE 100ns, a IS2 23kV, provided to be more effective for the analysis of protein from lyophilized microalgae cells. Lipid analysis of 12 days cultivated microalgae showed a predominant distribution of the C16:0, C18:2 and C18:0. The 8 days cultivation presented a distribution of C16:0, C18:2 and C22:6, but with C22:6 e C18:2 in a higher proportion. Since biofuel are produced by using the C14-C18 fatty acid contained in their composition, 8 days cultivation showed to be most effective for this purpose.
20

Vliv zrakového postižení rodičů na socializaci intaktního dítěte / Impact of parent's visual impairment on socialisation of intact child

Haringová, Věra January 2013 (has links)
This master thesis pursues social developement of intact child raised by the parents with visual impairment. It is specifically aimed at the development communication skills of this child. Childhood education by the parents with visual impairment presents certain specifics, which are manifested on the development of the komunikacni competence of the child. By the persons with visual impairment it is common to encounter enadequate mimic expresion and the absence of gestures. Child adopts the communication according to the model of her parents. But over time, its communication expressions become more and more related to the surrounding society. Considerable role in this process represent the encounters with intact persons, which deliver different non-verbal feedback. On the other side parents with visual impairment stimulate their children to the verbal communication and this verbal communication can become significantly more developed than that of their peers. Powered by TCPDF (www.tcpdf.org)

Page generated in 0.207 seconds