• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 31
  • 28
  • 15
  • 12
  • 4
  • 1
  • Tagged with
  • 213
  • 136
  • 102
  • 60
  • 46
  • 34
  • 31
  • 31
  • 29
  • 27
  • 25
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Analysis of the Wave Scattering From Turbulent Premixed Flame

Cho, Ju Hyeong 22 May 2006 (has links)
A theoretical investigation of acoustic wave interactions with turbulent premixed flames was performed. Such interactions affect the characteristic unsteadiness of combustion processes, e.g., combustion instabilities. The small perturbation method (SPM) was utilized to evaluate the scattered fields as a result of the flame-wave interaction at the instantaneous wrinkling surface of a randomly moving turbulent flame. Stochastic analysis of ensemble-averaged net acoustic energy was conducted to examine coherent and incoherent acoustic energy amplification /damping by the interaction. Net acoustic energy flux out of the flame is due to two factors: the acoustic velocity jump due to unsteady heat release from flame. The other is the flames unsteady motion. Five(5) dimensionless parameters that govern this net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, the ratio of flames diffusion time to flame fronts correlation time, and incidence angle. The dependence of net acoustic energy upon these dimensionless parameters was illustrated and discussed by numerical simulations in case of Gaussian statistics of flame front. The laminar flame response to equivalence ratio perturbations was also examined, showing that the overall heat release response is controlled by the superposition of three disturbances: heat of reaction, flame speed, and flame area. Heat of reaction disturbances dominate the flame response at low Strouhal numbers, roughly defined as (frequency x flame length)/(axial flow velocity). All three disturbances play equal roles at Strouhal numbers of O(1). In addition, the mean equivalence ratio exerts little effect upon this transfer function at low Strouhal numbers. At O(1) Strouhal numbers, the flame response increases with decreasing values of the mean equivalence ratio.
152

The role of Landau-Darrieus instability in flame dynamics and deflagration-to-detonation transition

Valiev, Damir January 2007 (has links)
<p>The role of intrinsic hydrodynamic instability of the premixed flame (known as Landau-Darrieus instability) in various flame phenomena is studied by means of direct numerical simulations of the complete system of hydrodynamic equations. Rigorous study of flame dynamics and effect of Landau-Darrieus instability is essential for all premixed combustion problems where multidimensional effects cannot be disregarded.</p><p>The present thesis consists of three parts. The first part deals with the fundamental problem of curved stationary flames propagation in tubes of different widths. It is shown that only simple "single-hump" slanted stationary flames are possible in wide tubes, and "multi-hump" flames in a laminar flow are possible in wide tubes only as a non-stationary mode of flame propagation. The stability limits of curved stationary flames in wider tubes are obtained, together with the dependence of the velocity of the stationary flame on the tube width. The flame dynamics in wider tubes is shown to be governed by a large-scale stability mechanism resulting in a highly slanted flame front.</p><p>The second part of the thesis is dedicated to studies of acceleration and fractal structure of outward freely propagating flames. It is shown that in direct numerical simulation the development of Landau-Darrieus instability results in the formation of fractal-like flame front structure. The fractal excess for radially expanding flames in cylindrical geometry is evaluated. Two-dimensional simulation of radially expanding flames in cylindrical geometry displays a radial growth with 1.25 power law temporal behavior after some transient time. It is shown that the fractal excess for 2D geometry obtained in the numerical simulation is in good agreement with theoretical predictions. The difference in fractal dimension between 2D cylidrical and three-dimensional spherical radially expanding flames is outlined. Extrapolation of the obtained results for the case of spherical expanding flames gives a radial growth power law that is consistent with temporal behavior obtained in the survey of experimental data.</p><p>The last part of the thesis concerns the role of Landau-Darrieus instability in the transition from deflagration to detonation. It is found that in sufficiently wide channels Landau-Darrieus instability may invoke nucleation of hot spots within the folds of the developing wrinkled flame, triggering an abrupt transition from deflagrative to detonative combustion. It is found that the mechanism of the transition is the temperature increase due to the influx of heat from the folded reaction zone, followed by autoignition. The transition occurs when the pressure elevation at the accelerating reaction front becomes high enough to produce a shock capable of supporting detonation.</p>
153

Numerical studies of turbulent flames in wall-jet flows

Pouransari, Zeinab January 2015 (has links)
The present thesis deals with the fundamental aspects of turbulent mixing and non-premixed combustion in the wall-jet flow, which has a close resemblance to many industrial applications. Direct numerical simulations (DNS) of turbulent wall-jets with isothermal and exothermic reactions are performed. In the computational domain, fuel and oxidizer enter separately in a nonpremixed manner and the flow is compressible, fully turbulent and subsonic. The triple “turbulence-chemistry-wall” interactions in the wall-jet flow have been addressed first by focusing on turbulent flow effects on the isothermal reaction, and then, by concentrating on heat-release effects on both turbulence and flame characteristics in the exothermic reaction. In the former, the mixing characteristics of the flow, the key statistics for combustion and the near-wall effects in the absence of thermal effects are isolated and studied. In the latter, the main target was to identify the heat-release effects on the different mixing scales of turbulence. Key statistics such as the scalar dissipation rates, time scale ratios, two-point correlations, one and two-dimensional premultiplied spectra are used to illustrate the heat release induced modifications. Finer small mixing scales were observed in the isothermal simulations and larger vortical structures formed after adding significant amounts of heat-release. A deeper insight into the heat release effects on three-dimensional mixing and reaction characteristics of the turbulent wall-jet flow has been gained by digging in different scales of DNS datasets. In particular, attention has been paid to the anisotropy levels and intermittency of the flow by investigating the probability density functions, higher order moments of velocities and reacting scalars and anisotropy invariant maps for different reacting cases. To evaluate and isolate the Damkohler number effects on the reaction zone structure from those of the heat release a comparison between two DNS cases with different Damkohler numbers but a comparable temperature rise is performed. Furthermore, the wall effects on the flame and flow characteristics, for instance, the wall heat transfer; the near-wall combustion effects on the skin-friction, the isothermal wall cooling effects on the average burning rates and the possibility of formation of the premixed mode within the non-premixed flame are addressed. The DNS datasets are also used for a priori  analysis, focused on the heat release effects on the subgrid-scale (SGS) statistics. The findings regarding the turbulence small-scale characteristics, gained through the statistical analysis of the flow have many phenomenological parallels with those concerning the SGS statistics. Finally, a DNS of turbulent reacting wall-jet at a substantially higher Reynolds number is performed in order to extend the applicability range for the conclusions of the present study and figuring out the possible differences. / <p>QC 20150225</p>
154

Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent Combustion

Yuen, Frank Tat Cheong 03 March 2010 (has links)
Turbulent premixed propane/air and methane/air flames were studied using planar Rayleigh scattering and particle image velocimetry on a stabilized Bunsen type burner. The fuel-air equivalence ratio was varied from Φ=0.7 to 1.0 for propane flames, and from Φ=0.6 to 1.0 for methane flames. The non-dimensional turbulence intensity, u'/SL (ratio of fluctuation velocity to laminar burning velocity), covered the range from 3 to 24, equivalent to conditions of corrugated flamelets and thin reaction zones regimes. Temperature gradients decreased with the increasing u'/SL and levelled off beyond u'/SL > 10 for both propane and methane flames. Flame front thickness increased slightly as u'/SL increased for both mixtures, although the thickness increase was more noticeable for propane flames, which meant the thermal flame front structure was being thickened. A zone of higher temperature was observed on the average temperature profile in the preheat zone of the flame front as well as some instantaneous temperature profiles at the highest u'/SL. Curvature probability density functions were similar to the Gaussian distribution at all u'/SL for both mixtures and for all the flame sections. The mean curvature values decreased as a function of u'/SL and approached zero. Flame front thickness was smaller when evaluated at flame front locations with zero curvature than that with curvature. Temperature gradients and FSD were larger when the flame curvature was zero. The combined thickness and FSD data suggest that the curvature effect is more dominant than that of the stretch by turbulent eddies during flame propagation. Integrated flame surface density for both propane and methane flames exhibited no dependance on u'/SL regardless of the FSD method used for evaluation. This observation implies that flame surface area may not be the dominant factor in increasing the turbulent burning velocity and the flamelet assumption may not be valid under the conditions studied. Dκ term, the product of diffusivity evaluated at conditions studied and the flame front curvature, was a magnitude smaller than or the same magnitude as the laminar burning velocity.
155

Modeling and analysis of chemiluminescence sensing for syngas, methane and jet-A combustion

Nori, Venkata Narasimham 17 June 2008 (has links)
Flame chemiluminescence has received increasing attention for its potential sensor and diagnostic applications in combustors. A number of studies have used flame chemiluminescence to monitor flame status, and combustor performance. While most of these studies have been empirical in nature, chemiluminescence modeling has the potential to provide a better understanding of the chemiluminescence processes and their dependence on various combustion operating conditions. The primary objective of this research was to identify and validate the important chemiluminescence reaction mechanisms for OH*, CH* and CO2*. To this end, measurements were performed at various operating conditions, primarily in laminar, premixed flames, fueled with methane, syngas (H2/CO) and Jet-A. The results are compared to 1-d laminar flame simulations employing the chemiluminescence mechanisms. The secondary objective was to use the experiments and validated chemiluminescence reaction mechanisms to evaluate the usefulness of flame chemiluminescence as a combustion diagnostic, particularly for heat release rate and equivalence ratio. The validation studies were able to identify specific mechanisms for OH*, CH* and CO2* that produced excellent agreement with the experimental data in most cases. The mechanisms were able to predict the variation of the chemiluminescence signals with equivalence ratio but not with pressure and reactant preheat. The possible reasons causing this disagreement could be due to the inaccuracies in the basic chemical mechanism used in the simulations, lack of accurate quenching data (for CH*), thermal excitation (for OH*) and radiative trapping (for OH* and CO2*) and interference from the emissions of other species (such as HCO and H2O), for CO2*. Regarding the utility of chemiluminescence for sensing, a number of observations can be made. In syngas-air flames, CO2* is a reasonable heat release rate marker, at least for very lean conditions. OH* shows some advantage in atmospheric-pressure methane and Jet-A flames in general, while CH* is advantageous at high pressure and very lean conditions at atmospheric pressure. The CO2*/OH* intensity ratio is not useful for sensing equivalence ratio in syngas flames, except maybe at very lean conditions. However, the CH*/OH* signal ratio is a promising approach for sensing equivalence ratio at low or very high pressure conditions in hydrocarbon flames. Thermal excitation and self-absorption processes for OH* chemiluminescence can become important for combustors operating at high pressure, high preheat and near stoichiometric conditions. Background subtracted chemiluminescence signals are recommended for sensing purposes.
156

[en] CONTRIBUTION TO THE LARGE EDDY SIMULATION OF A TURBULENT PREMIXED FLAME STABILIZED IN A HIGH SPEED FLOW / [pt] CONTRIBUIÇÃO À SIMULAÇÃO DAS GRANDES ESCALAS DE UMA CHAMA TURBULENTA PRÉ‐MISTURADA ESTABILIZADA EM UM ESCOAMENTO A ALTA VELOCIDADE

FERNANDO OLIVEIRA DE ANDRADE 18 October 2017 (has links)
[pt] Uma metodologia híbrida envolvendo simulação de grandes escalas e função densidade probabilidade transportada (LES-PDF) é desenvolvida para realizar simulações de escoamentos turbulentos reativos a baixo número de Mach. Equações de transporte de massa, da quantidade de movimento e de um escalar são resolvidas em conjunto com uma equação de estado no contexto do método LES. A modelagem da turbulência é realizada pelo modelo clássico de Smagorinsky e a taxa de produção química é representada pela lei de Arrhenius, para reação de combustão única, global e irreversível. As equações de transporte são discretizadas no espaço e no tempo mediante o uso de esquemas de segunda ordem, sobre malhas cartesianas uniformes, no âmbito do método dos volumes finitos. Os efeitos da turbulência sobre a combustão na escala sub-filtro são determinados por uma abordagem lagrangeana da PDF, a qual faz uso da técnica de Monte Carlo: equações diferenciais estocásticas (SDE), equivalentes a equação de Fokker-Plank, são utilizadas para a variável de progresso da reação química. LES e PDF evoluem simultaneamente, trocando informações a cada passo de integração no tempo, de modo que o campo de velocidade filtrado, a freqüência turbulenta e o coeficiente de difusão são fornecidos por LES, enquanto o modelo PDF retorna a taxa de reação química filtrada. Devido ao elevado número de partículas empregado no modelo PDF, a paralelização do programa lagrangeano é realizada, com base na estratégia de decomposição de domínios, implementada no programa euleriano. O modelo final é usado para simular uma configuração experimental que consiste de uma chama de metano e ar, estabilizada entre escoamentos paralelos de gases queimados e gases frescos em um canal de seção transversal quadrada constante. Uma comparação detalhada entre os resultados obtidos e os dados experimentais é realizada. / [en] A hybrid Large Eddy Simulation / transported Probability Density Function (LES-PDF) computational model is developed to perform the numerical simulation of variable-density low Mach number turbulent reactive flows. Transport equations for mass, momentum, and scalars are solved together with an equation of state within the LES framework. Turbulence is modeled using the classical Smagorinsky closure whereas chemical reaction is first addressed thanks to a global single-step chemistry scheme. The governing equations are discretized using second order accuracy spatial and temporal approximations applied to uniform Cartesian meshes within a finite volume framework. The effects of subgrid scale (SGS) turbulence on the combustion processes are accounted for by means of a Lagrangian transported PDF model which is coupled with the LES solver. The PDF model relies on the use of a Monte Carlo technique: Stochastic Differential Equations (SDE), equivalent to the Fokker- Planck equations are considered for the progress variable. LES and PDF models are solved simultaneously, exchanging information at each integration time step, the velocity field, turbulence frequency and diffusion coefficient being provided by LES, whereas the PDF model returns the filtered chemical reaction rate. Parallelization of the Lagrangian solver has been performed based on the domain decomposition strategy, the same strategy being already implemented for the eulerian LES solver. The resulting computational model is used to perform the simulation of an experimental test case consisting of a CH4-air flame established between two streams of fresh and burnt pilot gases in a constant area square cross section channel. The accuracy of the numerical solutions provided by the hybrid LESPDF approach is assessed by detailed comparisons with experimental data.
157

Caracterização experimental da radiação térmica emitida por chamas não pré-misturadas de metano diluído com CO2

Machado, Isaias Mortari January 2015 (has links)
No presente trabalho é apresentado um estudo do efeito da diluição com inertes sobre as características da transferência de calor por radiação em chamas laminares não pré-misturadas de metano. O trabalho também apresenta um estudo sobre a modelagem do fluxo radiativo proveniente de chamas turbulentas visando à obtenção de fatores de ponderação para o modelo das múltiplas fontes pontuais. Em ambos os estudos, a distribuição do fluxo radiante é obtida através de medições ao longo do eixo da chama e os valores de fração radiante são calculados a partir da integração dessa distribuição. É mostrado qualitativamente que a adição de gás inerte ao combustível propicia a inibição da formação de fuligem. É mostrado quantitativamente que a adição de gás inerte pode reduzir ou ampliar a fração radiante da chama, dependendo do tipo de gás, dos níveis de diluição e do tempo de residência característico da chama. São reportados valores para os fatores de ponderação utilizados no modelo de múltiplas fontes pontuais obtidos experimentalmente a partir de medições nas chamas. O formato da curva formada pelos fatores de ponderação é semelhante para os diferentes níveis de diluição com gás carbônico. A utilização desses fatores de ponderação no modelo de múltiplas fontes pontuais apresenta resultados satisfatórios em comparação com a distribuição dos fluxos radiativos medidos ao longo do eixo da chama. / In this work it is presented a study of the effect of fuel dilution with inerts on the radiative heat transfer characteristics of laminar non premixed methane flames. A study on the radiative flux distribution from turbulent flames is conducted in order to obtain weighting factors for the model of multiple point sources. The distribution of radiative heat flux is obtained by measuring the fluxes along the axis of the flame and the radiant fraction is calculated by the integration of such distribution. It is qualitatively shown that the addition of inert gas in the fuel leads to the inhibition of soot formation. It is quantitatively shown that the addition of inert may decrease or increase the radiant fraction depending on gas type, dilution levels and characteristic residence times of the flame. It is also reported values for the weighting factors used in the model of multiple point sources experimentally obtained from measurements. The shapes of the curves formed by the weighting factors are similar for the different dilution levels of carbon dioxide. The use of these weighting factors in the multi-point source model shows satisfactory results in comparison to the distribution of radiative fluxes measured along the flame axis.
158

Estudo numérico de chamas turbulentas não pré-misturadas através de modelos baseados no conceito de flamelets

Deon, Diego Luis January 2016 (has links)
A simulação numérica de chamas turbulentas é ainda hoje um desafio para as práticas de mecânica dos fluidos computacional. Compreendendo que as abordagens numéricas mais completas e realísticas atualmente disponíveis podem ser computacionalmente proibitivas, diversos modelos vêm sendo desenvolvidos com o objetivo de reproduzir os fenômenos envolvidos na combustão de uma forma simplificada, mas ainda fisicamente consistente. Este trabalho é, portanto, dedicado à comparação de diferentes modelos de fechamento para a turbulência baseados nas equações de Navier-Stokes em médias de Reynolds e de modelos para simplificação da cinética química baseados no conceito de flamelets, com e sem a modelagem da radiação térmica, esta última através do modelo de soma-ponderada-de-gasescinzas. Para tanto, na primeira parte do presente trabalho são comparados seis modelos de turbulência na solução de um jato turbulento de propano, não reativo e isotérmico, circundado por uma corrente paralela de ar, quanto a sua eficiência na predição dos valores médios da velocidade longitudinal e transversal, fração mássica de propano e massa específica da mistura. Os modelos são o k- Padrão (empregado na sua versão original e com mais duas modificações nas suas constantes conforme propostas encontradas na literatura), o k- Realizable, o k- Padrão e o k- Shear-Stress Transport. Um dos modelos de melhor desempenho é então usado na simulação de uma chama turbulenta não pré-misturada de metano/hidrogênio/nitrogênio circundada por um escoamento coaxial de ar de baixa velocidade, no qual são então comparados os modelos para redução da cinética química baseados no conceito de flamelets, o Steady Laminar Diffusion Flamelet (SLDF) e o Flamelet-Generated Manifold (FGM), tendo os seus resultados comparados aos dados experimentais para os valores médios da velocidade longitudinal, fração de mistura, temperatura e frações mássicas das espécies químicas. Dentre os modelos de turbulência avaliados, é observado que as duas versões ajustadas do k- Padrão e o k- Padrão se mostraram com melhor concordância em relação às medições experimentais do que os demais. No presente estudo é também avaliada a consistência dos dados experimentais reportados e uma discrepância é identificada neste jato, mas que, conforme verificado, não compromete a comparação dos modelos aqui proposta. Na solução do escoamento reativo, o modelo SLDF se mostrou com resultados bastante próximos aos resultados experimentais (exceto para o NO), sendo aprimorados ainda mais com a inclusão da modelagem da radiação térmica, sobretudo para regiões mais distantes do bico injetor do combustível, após o pico de temperatura da chama. O modelo FGM, contudo, apresentou resultados muito aquém dos esperados, sobretudo para as frações mássicas das espécies químicas, mesmo utilizando malhas com nível de refinamento muito maior e com o teste de diversas combinações de espécies para a variável de progresso da reação, e no qual a inclusão da radiação na modelagem também não trouxe benefícios perceptíveis. Todas as simulações numéricas foram realizadas empregando o código comercial ANSYS Fluent, versão 15.0.0. / The numerical simulation of turbulent flames is still a challenge for today's computational fluid dynamics practices. Understanding that the most complete and realistic numerical approaches available today may be computationally prohibitive, several models have been developed in order to reproduce the phenomena involved in combustion in a simplified, but still physically consistent, way. Therefore, this work is dedicated to compare different models for turbulence closure based on the Reynolds-averaged Navier-Stokes equations and models for simplification of the chemical kinetics based on the flamelet concept, with and without thermal radiation modeling through the weighted-sum-of-gray-gases model. Thus, in the first part of the current work six turbulence models are employed to solve a turbulent nonreactive isothermal flow, a propane jet surrounded by a parallel stream of air. The models are compared through their effectiveness in predicting the mean values of longitudinal and transversal velocities, propane mass fraction and mixture density. The models are the Standard k- (employed in its original version and with two modifications according to proposals found in the literature), the Realizable k- , the Standard k- and the Shear-Stress Transport k- . One of the best performing models is then used to simulate a turbulent nonpremixed flame of methane/hydrogen/nitrogen surrounded by a low-velocity air coflow, in which are compared the models to reduce the chemical kinetics based on the flamelets concept, the Steady Laminar Diffusion Flamelet (SLDF) and the Flamelet-Generated Manifold (FGM), being the numerical results compared to the experimental data for the mean values of longitudinal velocity, mixture fraction, temperature and species mass fractions. Among the six turbulence models evaluated, it is observed that the two adjusted versions of the Standard k- and the Standard k- showed better agreement with the experimental measurements than the other models. In the current study it is also evaluated the consistency of the reported experimental data and a discrepancy is identified, which, as verified, does not compromise the models comparison here proposed. In the solution of the reactive flow, the SLDF model showed results very close to the experimental results (except for NO), being further enhanced with the inclusion of the thermal radiation modeling, especially for regions far from fuel nozzle, after the peak of temperature of the flame. The FGM model, however, showed results far below the expected, especially for the mass fractions of chemical species, even using meshes with much higher refinement level and testing of various species combinations for the reaction progress variable. The inclusion of the radiation modeling did not brought noticeable benefits. All the numerical simulations were performed employing the ANSYS Fluent version 15.0.0 commercial code.
159

Estudo numérico de chamas turbulentas não pré-misturadas através de modelos baseados no conceito de flamelets

Deon, Diego Luis January 2016 (has links)
A simulação numérica de chamas turbulentas é ainda hoje um desafio para as práticas de mecânica dos fluidos computacional. Compreendendo que as abordagens numéricas mais completas e realísticas atualmente disponíveis podem ser computacionalmente proibitivas, diversos modelos vêm sendo desenvolvidos com o objetivo de reproduzir os fenômenos envolvidos na combustão de uma forma simplificada, mas ainda fisicamente consistente. Este trabalho é, portanto, dedicado à comparação de diferentes modelos de fechamento para a turbulência baseados nas equações de Navier-Stokes em médias de Reynolds e de modelos para simplificação da cinética química baseados no conceito de flamelets, com e sem a modelagem da radiação térmica, esta última através do modelo de soma-ponderada-de-gasescinzas. Para tanto, na primeira parte do presente trabalho são comparados seis modelos de turbulência na solução de um jato turbulento de propano, não reativo e isotérmico, circundado por uma corrente paralela de ar, quanto a sua eficiência na predição dos valores médios da velocidade longitudinal e transversal, fração mássica de propano e massa específica da mistura. Os modelos são o k- Padrão (empregado na sua versão original e com mais duas modificações nas suas constantes conforme propostas encontradas na literatura), o k- Realizable, o k- Padrão e o k- Shear-Stress Transport. Um dos modelos de melhor desempenho é então usado na simulação de uma chama turbulenta não pré-misturada de metano/hidrogênio/nitrogênio circundada por um escoamento coaxial de ar de baixa velocidade, no qual são então comparados os modelos para redução da cinética química baseados no conceito de flamelets, o Steady Laminar Diffusion Flamelet (SLDF) e o Flamelet-Generated Manifold (FGM), tendo os seus resultados comparados aos dados experimentais para os valores médios da velocidade longitudinal, fração de mistura, temperatura e frações mássicas das espécies químicas. Dentre os modelos de turbulência avaliados, é observado que as duas versões ajustadas do k- Padrão e o k- Padrão se mostraram com melhor concordância em relação às medições experimentais do que os demais. No presente estudo é também avaliada a consistência dos dados experimentais reportados e uma discrepância é identificada neste jato, mas que, conforme verificado, não compromete a comparação dos modelos aqui proposta. Na solução do escoamento reativo, o modelo SLDF se mostrou com resultados bastante próximos aos resultados experimentais (exceto para o NO), sendo aprimorados ainda mais com a inclusão da modelagem da radiação térmica, sobretudo para regiões mais distantes do bico injetor do combustível, após o pico de temperatura da chama. O modelo FGM, contudo, apresentou resultados muito aquém dos esperados, sobretudo para as frações mássicas das espécies químicas, mesmo utilizando malhas com nível de refinamento muito maior e com o teste de diversas combinações de espécies para a variável de progresso da reação, e no qual a inclusão da radiação na modelagem também não trouxe benefícios perceptíveis. Todas as simulações numéricas foram realizadas empregando o código comercial ANSYS Fluent, versão 15.0.0. / The numerical simulation of turbulent flames is still a challenge for today's computational fluid dynamics practices. Understanding that the most complete and realistic numerical approaches available today may be computationally prohibitive, several models have been developed in order to reproduce the phenomena involved in combustion in a simplified, but still physically consistent, way. Therefore, this work is dedicated to compare different models for turbulence closure based on the Reynolds-averaged Navier-Stokes equations and models for simplification of the chemical kinetics based on the flamelet concept, with and without thermal radiation modeling through the weighted-sum-of-gray-gases model. Thus, in the first part of the current work six turbulence models are employed to solve a turbulent nonreactive isothermal flow, a propane jet surrounded by a parallel stream of air. The models are compared through their effectiveness in predicting the mean values of longitudinal and transversal velocities, propane mass fraction and mixture density. The models are the Standard k- (employed in its original version and with two modifications according to proposals found in the literature), the Realizable k- , the Standard k- and the Shear-Stress Transport k- . One of the best performing models is then used to simulate a turbulent nonpremixed flame of methane/hydrogen/nitrogen surrounded by a low-velocity air coflow, in which are compared the models to reduce the chemical kinetics based on the flamelets concept, the Steady Laminar Diffusion Flamelet (SLDF) and the Flamelet-Generated Manifold (FGM), being the numerical results compared to the experimental data for the mean values of longitudinal velocity, mixture fraction, temperature and species mass fractions. Among the six turbulence models evaluated, it is observed that the two adjusted versions of the Standard k- and the Standard k- showed better agreement with the experimental measurements than the other models. In the current study it is also evaluated the consistency of the reported experimental data and a discrepancy is identified, which, as verified, does not compromise the models comparison here proposed. In the solution of the reactive flow, the SLDF model showed results very close to the experimental results (except for NO), being further enhanced with the inclusion of the thermal radiation modeling, especially for regions far from fuel nozzle, after the peak of temperature of the flame. The FGM model, however, showed results far below the expected, especially for the mass fractions of chemical species, even using meshes with much higher refinement level and testing of various species combinations for the reaction progress variable. The inclusion of the radiation modeling did not brought noticeable benefits. All the numerical simulations were performed employing the ANSYS Fluent version 15.0.0 commercial code.
160

Caracterização experimental da radiação térmica emitida por chamas não pré-misturadas de metano diluído com CO2

Machado, Isaias Mortari January 2015 (has links)
No presente trabalho é apresentado um estudo do efeito da diluição com inertes sobre as características da transferência de calor por radiação em chamas laminares não pré-misturadas de metano. O trabalho também apresenta um estudo sobre a modelagem do fluxo radiativo proveniente de chamas turbulentas visando à obtenção de fatores de ponderação para o modelo das múltiplas fontes pontuais. Em ambos os estudos, a distribuição do fluxo radiante é obtida através de medições ao longo do eixo da chama e os valores de fração radiante são calculados a partir da integração dessa distribuição. É mostrado qualitativamente que a adição de gás inerte ao combustível propicia a inibição da formação de fuligem. É mostrado quantitativamente que a adição de gás inerte pode reduzir ou ampliar a fração radiante da chama, dependendo do tipo de gás, dos níveis de diluição e do tempo de residência característico da chama. São reportados valores para os fatores de ponderação utilizados no modelo de múltiplas fontes pontuais obtidos experimentalmente a partir de medições nas chamas. O formato da curva formada pelos fatores de ponderação é semelhante para os diferentes níveis de diluição com gás carbônico. A utilização desses fatores de ponderação no modelo de múltiplas fontes pontuais apresenta resultados satisfatórios em comparação com a distribuição dos fluxos radiativos medidos ao longo do eixo da chama. / In this work it is presented a study of the effect of fuel dilution with inerts on the radiative heat transfer characteristics of laminar non premixed methane flames. A study on the radiative flux distribution from turbulent flames is conducted in order to obtain weighting factors for the model of multiple point sources. The distribution of radiative heat flux is obtained by measuring the fluxes along the axis of the flame and the radiant fraction is calculated by the integration of such distribution. It is qualitatively shown that the addition of inert gas in the fuel leads to the inhibition of soot formation. It is quantitatively shown that the addition of inert may decrease or increase the radiant fraction depending on gas type, dilution levels and characteristic residence times of the flame. It is also reported values for the weighting factors used in the model of multiple point sources experimentally obtained from measurements. The shapes of the curves formed by the weighting factors are similar for the different dilution levels of carbon dioxide. The use of these weighting factors in the multi-point source model shows satisfactory results in comparison to the distribution of radiative fluxes measured along the flame axis.

Page generated in 0.046 seconds