Spelling suggestions: "subject:"nonprobability sample"" "subject:"nonâprobability sample""
1 |
A Four Phase Model for Predicting the Probabilistic Situation ofCompound EventsJan, Irma, Amit, Miriam 17 April 2012 (has links)
This paper presents an innovat ive cons t ruct ion of a probabilistic model for predicting chance situations. It describes the construction of a four phase model, derived from an intense qualitative analysis of the written responses of 94 mathematically talented middle school students to the probabilistic compound event problem: “How many doubles are expected when rolling two dice fifty times?” We found
that the students’ comprehension process of compound event situations can be broken down into a four phase model: beliefs, subjective estimations, chance estimations and probabilistic calculations. The paper focuses on the development of the model over the course of the experiment, identifying the process the
students underwent as they attempted to answer the question. We explain each phase as it was reflected in the students\'' rationalizations. All phases, including their definitions and students’ citations, will be presented in the paper. While not every student necessarily goes through all four phases, an awareness and
understanding of them all allows for efficient, effective intervention during the learning process. We found that guidance and learning intervention helped shorten the preliminary phases, leading to more relative time spent on probabilistic calculations.
|
2 |
Analysis of survey data in the presence of non-ignorable missing-data and selection mechanismsHammon, Angelina 04 July 2023 (has links)
Diese Dissertation beschäftigt sich mit Methoden zur Behandlung von nicht-ignorierbaren
fehlenden Daten und Stichprobenverzerrungen – zwei häufig auftretenden Problemen bei
der Analyse von Umfragedaten. Beide Datenprobleme können die Qualität der Analyseergebnisse erheblich beeinträchtigen und zu irreführenden Inferenzen über die Population führen. Daher behandle ich innerhalb von drei verschiedenen Forschungsartikeln,
Methoden, die eine Durchführung von sogenannten Sensitivitätsanalysen in Bezug auf
Missing- und Selektionsmechanismen ermöglichen und dabei auf typische Survey-Daten
angewandt werden können. Im Rahmen des ersten und zweiten Artikels entwickele ich Verfahren zur multiplen Imputation von binären und ordinal Mehrebenen-Daten, welche es zulassen, einen potenziellen Missing Not at Random (MNAR) Mechanismus zu berücksichtigen. In unterschiedlichen Simulationsstudien konnte bestätigt werden, dass die neuen Imputationsmethoden in der Lage sind, in allen betrachteten Szenarien unverzerrte sowie effiziente Schätzungen zuliefern. Zudem konnte ihre Anwendbarkeit auf empirische Daten aufgezeigt werden.
Im dritten Artikel untersuche ich ein Maß zur Quantifizierung und Adjustierung von nicht ignorierbaren Stichprobenverzerrungen in Anteilswerten, die auf der Basis von nicht-probabilistischen Daten geschätzt wurden. Es handelt sich hierbei um die erste Anwendung des Index auf eine echte nicht-probabilistische Stichprobe abseits der Forschergruppe, die das Maß entwickelt hat. Zudem leite ich einen allgemeinen Leitfaden für die
Verwendung des Index in der Praxis ab und validiere die Fähigkeit des Maßes vorhandene
Stichprobenverzerrungen korrekt zu erkennen.
Die drei vorgestellten Artikel zeigen, wie wichtig es ist, vorhandene Schätzer auf ihre Robustheit hinsichtlich unterschiedlicher Annahmen über den Missing- und Selektionsmechanismus zu untersuchen, wenn es Hinweise darauf gibt, dass die Ignorierbarkeitsannahme verletzt sein könnte und stellen erste Lösungen zur Umsetzung bereit. / This thesis deals with methods for the appropriate handling of non-ignorable missing
data and sample selection, which are two common challenges of survey data analysis.
Both issues can dramatically affect the quality of analysis results and lead to misleading
inferences about the population. Therefore, in three different research articles, I treat
methods for the performance of so-called sensitivity analyses with regards to the missing data and selection mechanism that are usable with typical survey data.
In the first and second article, I provide novel procedures for the multiple imputation
of binary and ordinal multilevel data that are supposed to be Missing not At Random
(MNAR). The methods’ suitability to produce unbiased and efficient estimates could be
demonstrated in various simulation studies considering different data scenarios. Moreover,
I could show their applicability to empirical data.
In the third article, I investigate a measure to quantify and adjust non-ignorable selection
bias in proportions estimated based on non-probabilistic data. In doing so, I provide
the first application of the suggested index to a real non-probability sample outside its
original research group. In addition, I derive general guidelines for its usage in practice,
and validate the measure’s performance in properly detecting selection bias.
The three presented articles highlight the necessity to assess the sensitivity of estimates
towards different assumptions about the missing-data and selection mechanism if it seems
realistic that the ignorability assumption might be violated, and provide first solutions to
enable such robustness checks for specific data situations.
|
Page generated in 0.0778 seconds