• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 227
  • 71
  • 28
  • 25
  • 21
  • 14
  • 11
  • 6
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 511
  • 126
  • 95
  • 88
  • 73
  • 72
  • 70
  • 48
  • 48
  • 43
  • 39
  • 38
  • 36
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Statistical and Fuzzy Set Modeling for the Risk Analysis for Critical Infrastructure Protection

Cotellesso, Paul 25 September 2009 (has links)
No description available.
202

Multiaxial Fatigue and Deformation Including Non-proportional Hardening and Variable Amplitude Loading Effects

Shamsaei, Nima 03 September 2010 (has links)
No description available.
203

RADIO RESOURCE MANAGEMENT IN CDMA-BASED COGNITIVE AND COOPERATIVE NETWORKS

Wang, Bin 10 1900 (has links)
<p>In this thesis we study radio resource management (RRM) in two types of CDMA-based wireless networks, cognitive radio networks (CRNs) and cooperative communication networks. In the networks, all simultaneous transmissions share the same spectrum and interfere with one another. Therefore, managing the transmission power is very important as it determines other aspects of the network resource allocations, such as transmission time and rate allocations. The main objective of the RRM is to efficiently utilize the available network resources for providing the mobile users with satisfactory quality of service (QoS).</p> / Doctor of Philosophy (PhD)
204

Channel Time Allocations and Handoff Management for Fair Throughput in Wireless Mesh Networks

Qin, Lei 10 1900 (has links)
<p>In this thesis we study a wireless mesh network (WMN), where a number of access points (APs) form a wireless infrastructure and provide communications to the mobile stations (MSs). Different APs share the same frequency channel. We study how to provide fair throughput for the MSs while efficiently utilizing the channel resources through effective handoff management and channel timeline allocations.</p> <p>In the first part of the thesis, we assume that the channel time allocations at the AP level are given, and jointly consider the handoff management of the MSs and the channel time allocations at the MS level. An optimization problem is formulated based on long-term proportional fairness (PF) and solved. A heuristic distributed scheme is then proposed, which can be easily implemented in a practical WMN.</p> <p>In the second part, we jointly study the channel time allocations at the AP level and the MS level together with the MS handoff management. An optimization problem is first formulated and solved as a benchmark. Two distributed schemes are proposed by decoupling the handoff management and time allocations. The HO-CA scheme performs heuristic handoff decisions for the MSs and then optimizes the channel time allocations. The CA-HO scheme allocates the channel time to individual APs based on the neighboring relationship of the APs, and then makes handoff.</p> <p>Numerical results indicate that our proposed distributed schemes can achieve close-to-optimum fairness, improve the network utilization and balance the traffic load under uneven MSs geographical distributions.</p> / Master of Applied Science (MASc)
205

Variable Selection and Supervised Dimension Reduction for Large-Scale Genomic Data with Censored Survival Outcomes

Spirko, Lauren Nicole January 2017 (has links)
One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes, providing insight into the disease's process. With the rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of thousands of genes and proteins resulting in enormous data sets where the number of genomic variables (covariates) is far greater than the number of subjects. It is also typical for such data sets to have a high proportion of censored observations. Methods based on univariate Cox regression are often used to select genes related to survival outcome. However, the Cox model assumes proportional hazards (PH), which is unlikely to hold for each gene. When applied to genes exhibiting some form of non-proportional hazards (NPH), these methods could lead to an under- or over-estimation of the effects. In this thesis, we develop methods that will directly address t / Statistics
206

Temporal Event Modeling of Social Harm with High Dimensional and Latent Covariates

Liu, Xueying 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The counting process is the fundamental of many real-world problems with event data. Poisson process, used as the background intensity of Hawkes process, is the most commonly used point process. The Hawkes process, a self-exciting point process fits to temporal event data, spatial-temporal event data, and event data with covariates. We study the Hawkes process that fits to heterogeneous drug overdose data via a novel semi-parametric approach. The counting process is also related to survival data based on the fact that they both study the occurrences of events over time. We fit a Cox model to temporal event data with a large corpus that is processed into high dimensional covariates. We study the significant features that influence the intensity of events.
207

Proportional navigation target tracking

Pittelkau, Mark Edward January 1983 (has links)
Motivated by the fact that anti-ship missiles present a serious threat to today's Navy, a tracking filter which will give superior tracking and trajectory extrapolation when tracking anti-ship missiles is desired. Because most anti-ship missiles use proportional navigation in their guidance systems, it is best to model their motion using the proportional navigation guidance law. An unbiased narrowband filter is required because the state estimate is used to extrapolate the trajectory over the long time of flight of the gun projectile used to intercept the anti-ship missile. Using the proportional navigation guidance law, a tracking filter is developed which meets the stated requirements. An advantage in using the proportional navigation model, which is not found in previous target models, is the end goal or destination constraint inherent in the proportional navigation guidance law: the anti-ship missile's goal is to strike ownership; the proportional navigation trajectory always passes through the origin. Because of model mismatch when tracking missiles using proportional navigation guidance, previous tracking filters, which use constant velocity, exponentially correlated acceleration, or constant acceleration models of target motion, must use a wide bandwidth or else develop significant bias errors. / M.S.
208

The Design and Construction of a High Bandwidth Proportional Fuel Injection System for Liquid Fuel Active Combustion Control

Lagimoniere, Ernest Eugene Jr. 23 August 2001 (has links)
This last decade experienced a sudden increase of interest in the control of thermo-acoustic instabilities, in particular through the use of fuel modulation techniques. The primary goal of this research was to design, construct and characterize a high bandwidth proportional fuel injection system, which could be used to study the effect of specific levels of fuel modulation on the combustion process and the reduction of thermo-acoustic instabilities. A fuel injection system, incorporating the use of a closed loop piston and check valve, was designed to modulate the primary fuel supply of an atmospheric liquid-fueled swirl stabilized combustor operating at a mean volumetric fuel flow rate of 0.4 GPH. The ability of the fuel injection system to modulate the fuel was examined by measuring the fuel line pressure and the flow rate produced during operation. The authority of this modulation over the combustion process was investigated by examining the effect of fuel modulation on the combustor pressure and the heat release of the flame. Sinusoidal operation of the fuel injection system demonstrated: a bandwidth greater that 800 Hz, significant open loop authority (averaging 12 dB) with regards to the combustor pressure, significant open loop authority (averaging 33 dB) with regards to the unsteady heat release rate and an approximate 8 dB reduction of the combustor pressure oscillation present at 100 Hz, using a phase shift controller. It is possible to scale the closed loop piston and check valve configuration used to create the fuel injection system discussed in this work to realistic combustor operating conditions for further active combustion control studies. / Master of Science
209

Design and Validation of a Proportional Throttle Valve System for Liquid-Fuel Active Combustion Control

Schiller, Noah Harrison 16 October 2003 (has links)
High-bandwidth fuel modulation is currently one of the most promising methods for active combustion control. To attenuate the large pressure oscillations in the combustion chamber, the fuel is pulsed so that the heat release rate fluctuations damp the pressure oscillations in the combustor. This thesis focuses on the development and implementation of a high-bandwidth, proportional modulation system for liquid-fuel active combustion control. The throttle valve modulation system, discussed in this thesis, uses a 500-um piezoelectric stack coupled with an off-the-shelf valve. After comparing three other types of actuators, the piezoelectric stack was selected because of its compact size, bandwidth capabilities, and relatively low cost. Using the acoustic resonance of the fuel line, the system is able to achieve 128% pressure modulation, relative to the mean pressure, and is capable of producing more than 75% flow modulation at 115 Hz. Additionally, at 760 Hz the system produces 40% pressure modulation and 21% flow modulation with flow rates between 0.4 and 10 gph. Control authority was demonstrated on a single-nozzle kerosene combustor which exhibits a well-pronounced instability at ~115 Hz. Using the modulation system, the fundamental peak of the combustion instability was reduced by 30 dB, and the broadband sound pressure levels inside the combustor were reduced by 12 dB. However, the most important conclusion from the combustion control experiments was not the system?s accomplishments, but rather its inability to control the combustor at high global equivalence ratios. Our work indicates that having the ability to modulate a large percentage of the primary fuel is not always sufficient for active combustion control. / Master of Science
210

Defining rarity and determining the mechanisms of rarity for North American freshwater fishes

Pritt, Jeremy Joseph 29 April 2010 (has links)
Conserving rare species and protecting biodiversity depends on sound information on the nature of rarity. Rarity is multidimensional, presenting the need for a quantitative classification scheme by which to label species as rare or common. I defined rarity for freshwater fishes based on the range extents, habitat breadths, and site abundance and examined the relationship between these dimensions of rarity and imperilment. Imperiled fishes were most often rare by all three dimensions, whereas undesignated species were most often common by all three dimensions. Next, I examined the effect of sampling intensity on observed rarity of stream fish using different numerical and proportional rarity criteria and found that increasing sampling intensity increased the number of species labelled as rare with proportional criteria but did not affect the number of species labelled as rare with numerical criteria. Additional electrofishing passes within a fixed reach increases the likelihood of detecting rare and endemic species. A tradeoff between information collected and sampling resources should be carefully considered in the context of objectives when sampling for rare species. Finally, I examined the effect of regional and watershed habitat variables, biotic interaction variables, and instream habitat variables, on the rare or common status on 23 North American freshwater fishes. I also compared biological and reproductive traits among species classified into the rarity framework. Rarity was successfully explained in 19 of the 23 species and I found that regional and watershed habitat variables were the most important predictors of rarity. I also found that species large body size, high fecundity, and long age at maturity were generally more common by range extent and site abundance while those species that did not guard nests were more frequently rare by site abundance. These results indicate that large-scale variables can be used to successfully predict species rarity and rare fishes differ in their biology and reproduction from common fishes. / Master of Science

Page generated in 0.1275 seconds