Spelling suggestions: "subject:"nonproportional hazard model"" "subject:"unproportional hazard model""
11 |
The determinants of under-five mortality in Malawi : evidance based on demographic and health survey 2010 / Maiwashe Khathutshelo ValenciaMaiwashe, Khathutshelo Valencia January 2014 (has links)
Background: The study examined the effects of the determinants of under-five mortality in
Malawi. It therefore aimed to estimate the rate or prevalence of under-five mortality in
Malawi and to examine differentials in infant and child mortality by socio-economic,
demographic, environmental, health-seeking behaviour and nutritional value.
Methods: This study involved a secondary data analysis of the 2010 Malawi Demographic
and Health Survey (MDHS) data set of children under five years old and women who had
given birth in the five years preceding the survey. The Kaplan-Meier survival analysis and
multivariate hazard analysis were used to examine the relationship between under-five
mortality and socio-economic. demographic, environmental, health-seeking behaviour and
nutritional factors.
Results: The results show that birth order, mother's education, place of residence. region and
exclusive breastfeeding were significantly associated with under-five mortality. The results
also show that there was no significant association between under-five mortality and other
indicators of socio-economic. demographic. environmental, health-seeking behaviour. The
results also show that more deaths of under-fives occurred during infancy than during
childhood.
Conclusion: The results show that more deaths occurred during the first months after birth
than after 12 months of age. This showed that mother's education, birth order, place of
residence, region and breastfeeding had a greater influence on the survival of the child. / Thesis (M.Soc.Sc. Population Studies) North-West University, Mafikeng Campus, 2014
|
12 |
Estimating Loss-Given-Default through Survival Analysis : A quantitative study of Nordea's default portfolio consisting of corporate customersHallström, Richard January 2016 (has links)
In Sweden, all banks must report their regulatory capital in their reports to the market and their models for calculating this capital must be approved by the financial authority, Finansinspektionen. The regulatory capital is the capital that a bank has to hold as a security for credit risk and this capital should serve as a buffer if they would loose unexpected amounts of money in their lending business. Loss-Given-Default (LGD) is one of the main drivers of the regulatory capital and the minimum required capital is highly sensitive to the reported LGD. Workout LGD is based on the discounted future cash flows obtained from defaulted customers. The main issue with workout LGD is the incomplete workouts, which in turn results in two problems for banks when they calculate their workout LGD. A bank either has to wait for the workout period to end, in which some cases take several years, or to exclude or make rough assumptions about those incomplete workouts in their calculations. In this study the idea from Survival analysis (SA) methods has been used to solve these problems. The mostly used SA model, the Cox proportional hazards model (Cox model), has been applied to investigate the effect of covariates on the length of survival for a monetary unit. The considered covariates are Country of booking, Secured/Unsecured, Collateral code, Loan-To-Value, Industry code, Exposure-At- Default and Multi-collateral. The data sample was first split into 80 % training sample and 20 % test sample. The applied Cox model was based on the training sample and then validated with the test sample through interpretation of the Kaplan-Meier survival curves for risk groups created from the prognostic index (PI). The results show that the model correctly rank the expected LGD for new customers but is not always able to distinguish the difference between risk groups. With the results presented in the study, Nordea can get an expected LGD for newly defaulted customers, given the customers’ information on the considered covariates in this study. They can also get a clear picture of what factors that drive a low respectively high LGD. / I Sverige måste alla banker rapportera sitt lagstadgade kapital i deras rapporter till marknaden och modellerna för att beräkna detta kapital måste vara godkända av den finansiella myndigheten, Finansinspektionen. Det lagstadgade kapitalet är det kapital som en bank måste hålla som en säkerhet för kreditrisk och den agerar som en buffert om banken skulle förlora oväntade summor pengar i deras utlåningsverksamhet. Loss- Given-Default (LGD) är en av de främsta faktorerna i det lagstadgade kapitalet och kravet på det minimala kapitalet är mycket känsligt för det rapporterade LGD. Workout LGD är baserat på diskonteringen av framtida kassaflöden från kunder som gått i default. Det huvudsakliga problemet med workout LGD är ofullständiga workouts, vilket i sin tur resulterar i två problem för banker när de ska beräkna workout LGD. Banken måste antingen vänta på att workout-perioden ska ta slut, vilket i vissa fall kan ta upp till flera år, eller så får banken exkludera eller göra grova antaganden om dessa ofullständiga workouts i sina beräkningar. I den här studien har idén från Survival analysis (SA) metoder använts för att lösa dessa problem. Den mest använda SA modellen, Cox proportional hazards model (Cox model), har applicerats för att undersöka effekten av kovariat på livslängden hos en monetär enhet. De undersökta kovariaten var Land, Säkrat/Osäkrat, Kollateral-kod, Loan-To-Value, Industri-kod Exposure-At-Default och Multipla-kollateral. Dataurvalet uppdelades först i 80 % träningsurval och 20 % testurval. Den applicerade Cox modellen baserades på träningsurvalet och validerades på testurvalet genom tolkning av Kaplan-Meier överlevnadskurvor för riskgrupperna skapade från prognosindexet (PI). Med de presenterade resultaten kan Nordea beräkna ett förväntat LGD för nya kunder i default, givet informationen i den här studiens undersökta kovariat. Nordea kan också få en klar bild över vilka faktorer som driver ett lågt respektive högt LGD.
|
13 |
Sexual initiation and religion in BrazilVerona, Ana Paula de Andrade 26 October 2010 (has links)
With the growth of Pentecostalism over the last few decades, conservative values and punitive sanctions related to the sexual behavior of adolescents and unmarried youth began to play an important and systematic role in Pentecostal and renewed Protestant churches as well as in charismatic Catholic communities. Simultaneously, religion has become an important and highly present factor in the lives of many adolescents and youth in Brazil. In terms of attempting to attract this age group, these churches and communities, stand out, as they have used their resources to create a space for this segment of the population to participate in a religious environment. Youth groups, dating groups, trade courses, lectures, aid work in poor communities, confirmation and other activities such as retreats and religious trips, have been frequently observed in these churches and charismatic communities.
In this dissertation, I examine the associations between religious involvement and sexual initiation in Brazil. More specifically, I investigate (1) whether religious denomination and religiosity are associated with age at premarital first sexual intercourse, (2) whether these associations have changed over the last three decades, (3) how different churches and religious leaders address sexual behavior issues, and (4) the mechanisms through which religion can influence adolescents’ sexual behavior in Brazil. These research questions are assessed by employing multiple data sources and methodologies including three Demographic and Health Surveys carried out in Brazil in 1986, 1996, and 2006 and event history analysis, as well as in-depth interview data and participant observation among different religious groups and affiliations by attending several Catholic masses, Protestant religious services, youth groups, Sunday schools, and religious talks/lectures.
Quantitative and qualitative findings of this dissertation show that adolescents and youth from Pentecostal churches and communities seem more likely to delay or abstain from premarital sexual initiation when compared to traditional Catholics. I conclude by suggesting that the dissemination of conservative norms and sanctions as well as the availability of greater space for youth to maintain close relationships with these churches have helped create mechanisms through which religion can directly and indirectly influence the lives and sexual behavior of young people in Brazil. / text
|
14 |
Predeterminantes de sobrevivência em vítimas de acidentes de trânsito submetidas a atendimento pré-hospitalar de suporte avançado à vida / Survival determinant factors in motor vehicle crash victms submitted to prehospital advanced life supportMalvestio, Marisa Aparecida Amaro 15 December 2005 (has links)
O Atendimento Pré Hospitalar (APH) é um importante recurso no atendimento à vítimas de trauma. No entanto, há muitas dificuldades para demonstrar o efeito benéfico das intervenções do APH na sobrevivência das vítimas, sobretudo as de suporte avançado à vida (SAV). A proposta deste estudo é caracterizar as vítimas de acidentes trânsito, com Revised Trauma Score (RTS) <11, atendidas pelo SAV municipal e encaminhadas a hospitais terciários em São Paulo, além de identificar as variáveis da fase pré-hospitalar associadas à sobrevivência e avaliar o valor predeterminante dessas variáveis sobre o resultado obtido pelas vítimas. As variáveis avaliadas foram: sexo, idade, mecanismos do acidente, procedimentos de suporte básico e SAV realizados, repercussão fisiológica do trauma na cena do acidente, (considerando o RTS , seus parâmetros e flutuações), o tempo consumido no APH, gravidade do trauma segundo o Injury Severity Score (ISS),a Maximum Abbreviated Injury Scale (MAIS) e número de lesões para cada segmento corporal. Os resultados obtidos por 175 vítimas entre 12 e 65 anos, foram submetidos a "Análise de Sobrevivência de Kaplan Meier" e ao Modelo de Riscos Proporcionais de Cox". A variável dependente foi o tempo de sobrevivência após o acidente, considerando os intervalos até 6h,12h, 24h, 48h, até 7 dias e até o término da internação. Os homens (86,9%) e a faixa etária de 20 a 29 anos (36,0%) foram as mais freqüentes. Os atropelamentos (45,1%) e o envolvimento de motocicletas e seus ocupantes (30,9%) foram os destaques dentre os mecanismos de trauma. A média do RTS na cena e do ISS, foram respectivamente 8,8 e 19,4.Os segmentos corpóreos mais atingidos foram: cabeça (58,8%), membros inferiores (45,1%) e superfície externa (40%). A média de tempo consumido na fase de APH foi 41min (tempo de cena 20,2min). Ocorreram 36% de óbitos, (metade em até 6 horas). A análise estatística revelou 24 fatores associados à sobrevivência, dentre eles, os procedimentos respiratórios avançados e os circulatórios básicos, as variáveis relativas ao RTS e a gravidade (ISS, MAIS e o número de lesões). No modelo final de Cox, ter sido submetido a procedimentos respiratórios avançados, compressões torácicas, apresentar lesão abdominal e ISS>25, foi associado a maior risco para o óbito até 48h após o trauma. Até 7 dias, a compressão torácica não se manteve no modelo final e a PAS de zero a 75mmHg apresentou associação com a morte após o acidente. Até a alta hospitalar, a ausência de PAS na avaliação inicial permaneceu no modelo. A reposição de volume foi o único fator com valor protetor para o risco de óbito presente em todos os momentos / The prehospital care (PH) is an important resource to trauma victims care. Nevertheless, there is great difficulty in demonstrating the PH interventions positive effect in victims survival, especially when concerning the advanced life support (ALS). The aim of this study is to characterize motor vehicle crash victims with Revised Trauma Score (RTS) <11 cared by municipal ALS and moved to tertiary hospitals in São Paulo in addition to identifying the prehospital variables associated to survival, and to evaluate their values as victim survival outcome determinant. The variables evaluated were: sex, age, trauma mechanism, basic life support and ALS procedures, physiological measures in the accident scene (considering the RTS, its parameters and fluctuations), the time consumed in PH phase, trauma severity by Injury Severity Score (ISS), the Maximum Abbreviated Injury Scale (MAIS) and number of lesions in each body region. The main results obtained by 175 victims between 12 e 65 years of age were submitted to the Kaplan Meier Survival Analysis and to Cox Proportional hazards Regression Analysis. The dependent variable was the survival time after the motor vehicle accident considering the intervals up to 6,12,24 and 48hs , up to 7 days and until the time of hospital discharge. Men (86,9%) and the 20 to 29 aged group (36%) were the most frequent. The pedestrians struck by car (45,1%) and the motorcycles (and their riders) (30,9%)were the highlight in trauma mechanisms. The RTS and the ISS average were 8,8 and 19,4 respectively. The more damaged body regions were head (58,8%), lower limbs (45,1%) and external surface (40%).The prehospital time average was 41 min (scene time 20,2min).Death rate was 36% (half of which up to 6hs).The statistical analysis revealed 24 survival associated factors. The ALS and the circulatory basic procedures, the RTS variables and the trauma severity (ISS,MAIS and number of lesions) were within them. In the final Cox Model were associated to higher risk of death up to 48hs after trauma: the submission to ALS respiratory procedures, chest compressions, the presence of abdominal injuries and ISS>25 .Until the 7th day the chest compression was not sustained in a final model and the systolic blood pressure (SBP) from zero to 75mmHg revealed statistical association with death after trauma. Until hospital discharge the SBP absence in scene evaluation remained in the model. The prehospital intravenous fluid refilling was the only factor of protector value to death risk in all moments
|
15 |
Comparação entre alguns métodos estatísticos em análise de sobrevivência: aplicação em uma coorte de pacientes com câncer de pênis / Comparison of some statistical methods in survival analysis: application in a cohort of patients with penile cancerLatorre, Maria do Rosario Dias de Oliveira 05 June 1996 (has links)
O objetivo deste trabalho foi comparar o desempenho do modelo de riscos proporcionais de Cox convencional, modelo de Cox modificado quando os riscos não são proporcionais e o modelo de análise de sobrevida baseado na teoria de processos de contagem. Para tanto utilizou-se uma coorte de 648 pacientes portadores de câncer de pênis, atendidos no Departamento de Cirurgia Pélvica do Hospital A. C. Camargo, no período de 1953 a 1985. Dessa coorte foram selecionadas três amostras com o objetivo de validar internamente os resultados da análise de sobrevida do banco de dados original. Os resultados do modelo de riscos proporcionais de Cox, no banco de dados original, foram confirmados por uma das amostras desse conjunto de dados. Apenas o estadiamento N foi confirmado como fator prognóstico também nas outras duas amostras. O modelo de riscos proporcionais de Cox e o modelo de análise de sobrevida baseado na teoria de processos de contagem apresentaram resultados semelhantes, na definição dos fatores prognósticos dessa coorte de pacientes com câncer de pênis. O modelo utilizando processos de contagem é mais sofisticado, do ponto de vista matemático. Porém o modelo de Cox está disponível em grande número de pacotes estatísticos e a interpretação de seus coeficientes se faz com maior facilidade. Por isso, talvez, continue a ser a técnica estatística mais utilizada quando o objetivo do estudo é definir fatores prognósticos e grupos de risco. Os fatores prognósticos para a sobrevida de pacientes com câncer de pênis foram os estadiamentos T e N e o grau de diferenciação do tumor. Esses resultados foram ajustados pelo ano de início de tratamento no Hospital A.C. Camargo. Os pacientes com prognóstico favorável foram os que apresentaram tumor pequeno, sem presença de linfonodos clinicamente positivos, e tumor bem diferenciado. / The aim of this study was to compare the performance of the Cox proportional hazards model, the Cox model with time-dependent covariates and the survival model using the counting process theory. These methods were applied in a cohort of 648 patients with penile cancer treated at the Department of Pelvic Surgery, Hospital A.C. Camargo (São Paulo-Brazil), between 1953 and 1985. Three samples were selected from the total database in order to check the internal validity. The prognostic factors selected using the Cox proportional hazards model were the same in one sample. The only prognostic factor selected in all samples was the N stage. The T and N stages, and the grade of differentiation were independent prognostic factors of survival using both the Cox proportional hazards model and the survival,model using the counting process theory. The statistical significance was the same and even the values of estimation of the coefficients were very close. The survival model using the counting process is more sophisticated from the mathematical point of view, but the Cox model is more available in statistical software, and, probably because of this, is more applied in survival analysis than the model using the counting processo Patients with small tumors, clinically negatives nodes and well differentiated tumors showed a favorable prognosis. These results were adjusted by year of the beginning in the study.
|
16 |
Bayesian classification and survival analysis with curve predictorsWang, Xiaohui 15 May 2009 (has links)
We propose classification models for binary and multicategory data where the
predictor is a random function. The functional predictor could be irregularly and
sparsely sampled or characterized by high dimension and sharp localized changes. In
the former case, we employ Bayesian modeling utilizing flexible spline basis which is
widely used for functional regression. In the latter case, we use Bayesian modeling
with wavelet basis functions which have nice approximation properties over a large
class of functional spaces and can accommodate varieties of functional forms observed
in real life applications. We develop an unified hierarchical model which accommodates
both the adaptive spline or wavelet based function estimation model as well as
the logistic classification model. These two models are coupled together to borrow
strengths from each other in this unified hierarchical framework. The use of Gibbs
sampling with conjugate priors for posterior inference makes the method computationally
feasible. We compare the performance of the proposed models with the naive
models as well as existing alternatives by analyzing simulated as well as real data. We
also propose a Bayesian unified hierarchical model based on a proportional hazards model and generalized linear model for survival analysis with irregular longitudinal
covariates. This relatively simple joint model has two advantages. One is that using
spline basis simplifies the parameterizations while a flexible non-linear pattern of
the function is captured. The other is that joint modeling framework allows sharing
of the information between the regression of functional predictors and proportional
hazards modeling of survival data to improve the efficiency of estimation. The novel
method can be used not only for one functional predictor case, but also for multiple
functional predictors case. Our methods are applied to analyze real data sets and
compared with a parameterized regression method.
|
17 |
The Comparison of Parameter Estimation with Application to Massachusetts Health Care Panel Study (MHCPS) DataHuang, Yao-wen 03 June 2004 (has links)
In this paper we propose two simple algorithms to estimate parameters £] and baseline survival function in Cox proportional hazard model with application to Massachusetts Health Care Panel Study (MHCPS) (Chappell, 1991) data which is a left truncated and interval censored data. We find that, in the estimation of £] and baseline survival function, Kaplan and Meier algorithm is uniformly better than the Empirical algorithm. Also, Kaplan and Meier algorithm is uniformly more powerful than the Empirical algorithm in testing whether two groups of survival functions are the same. We also define a distance measure D and compare the performance of these two algorithms through £] and D.
|
18 |
Predeterminantes de sobrevivência em vítimas de acidentes de trânsito submetidas a atendimento pré-hospitalar de suporte avançado à vida / Survival determinant factors in motor vehicle crash victms submitted to prehospital advanced life supportMarisa Aparecida Amaro Malvestio 15 December 2005 (has links)
O Atendimento Pré Hospitalar (APH) é um importante recurso no atendimento à vítimas de trauma. No entanto, há muitas dificuldades para demonstrar o efeito benéfico das intervenções do APH na sobrevivência das vítimas, sobretudo as de suporte avançado à vida (SAV). A proposta deste estudo é caracterizar as vítimas de acidentes trânsito, com Revised Trauma Score (RTS) <11, atendidas pelo SAV municipal e encaminhadas a hospitais terciários em São Paulo, além de identificar as variáveis da fase pré-hospitalar associadas à sobrevivência e avaliar o valor predeterminante dessas variáveis sobre o resultado obtido pelas vítimas. As variáveis avaliadas foram: sexo, idade, mecanismos do acidente, procedimentos de suporte básico e SAV realizados, repercussão fisiológica do trauma na cena do acidente, (considerando o RTS , seus parâmetros e flutuações), o tempo consumido no APH, gravidade do trauma segundo o Injury Severity Score (ISS),a Maximum Abbreviated Injury Scale (MAIS) e número de lesões para cada segmento corporal. Os resultados obtidos por 175 vítimas entre 12 e 65 anos, foram submetidos a Análise de Sobrevivência de Kaplan Meier e ao Modelo de Riscos Proporcionais de Cox. A variável dependente foi o tempo de sobrevivência após o acidente, considerando os intervalos até 6h,12h, 24h, 48h, até 7 dias e até o término da internação. Os homens (86,9%) e a faixa etária de 20 a 29 anos (36,0%) foram as mais freqüentes. Os atropelamentos (45,1%) e o envolvimento de motocicletas e seus ocupantes (30,9%) foram os destaques dentre os mecanismos de trauma. A média do RTS na cena e do ISS, foram respectivamente 8,8 e 19,4.Os segmentos corpóreos mais atingidos foram: cabeça (58,8%), membros inferiores (45,1%) e superfície externa (40%). A média de tempo consumido na fase de APH foi 41min (tempo de cena 20,2min). Ocorreram 36% de óbitos, (metade em até 6 horas). A análise estatística revelou 24 fatores associados à sobrevivência, dentre eles, os procedimentos respiratórios avançados e os circulatórios básicos, as variáveis relativas ao RTS e a gravidade (ISS, MAIS e o número de lesões). No modelo final de Cox, ter sido submetido a procedimentos respiratórios avançados, compressões torácicas, apresentar lesão abdominal e ISS>25, foi associado a maior risco para o óbito até 48h após o trauma. Até 7 dias, a compressão torácica não se manteve no modelo final e a PAS de zero a 75mmHg apresentou associação com a morte após o acidente. Até a alta hospitalar, a ausência de PAS na avaliação inicial permaneceu no modelo. A reposição de volume foi o único fator com valor protetor para o risco de óbito presente em todos os momentos / The prehospital care (PH) is an important resource to trauma victims care. Nevertheless, there is great difficulty in demonstrating the PH interventions positive effect in victims survival, especially when concerning the advanced life support (ALS). The aim of this study is to characterize motor vehicle crash victims with Revised Trauma Score (RTS) <11 cared by municipal ALS and moved to tertiary hospitals in São Paulo in addition to identifying the prehospital variables associated to survival, and to evaluate their values as victim survival outcome determinant. The variables evaluated were: sex, age, trauma mechanism, basic life support and ALS procedures, physiological measures in the accident scene (considering the RTS, its parameters and fluctuations), the time consumed in PH phase, trauma severity by Injury Severity Score (ISS), the Maximum Abbreviated Injury Scale (MAIS) and number of lesions in each body region. The main results obtained by 175 victims between 12 e 65 years of age were submitted to the Kaplan Meier Survival Analysis and to Cox Proportional hazards Regression Analysis. The dependent variable was the survival time after the motor vehicle accident considering the intervals up to 6,12,24 and 48hs , up to 7 days and until the time of hospital discharge. Men (86,9%) and the 20 to 29 aged group (36%) were the most frequent. The pedestrians struck by car (45,1%) and the motorcycles (and their riders) (30,9%)were the highlight in trauma mechanisms. The RTS and the ISS average were 8,8 and 19,4 respectively. The more damaged body regions were head (58,8%), lower limbs (45,1%) and external surface (40%).The prehospital time average was 41 min (scene time 20,2min).Death rate was 36% (half of which up to 6hs).The statistical analysis revealed 24 survival associated factors. The ALS and the circulatory basic procedures, the RTS variables and the trauma severity (ISS,MAIS and number of lesions) were within them. In the final Cox Model were associated to higher risk of death up to 48hs after trauma: the submission to ALS respiratory procedures, chest compressions, the presence of abdominal injuries and ISS>25 .Until the 7th day the chest compression was not sustained in a final model and the systolic blood pressure (SBP) from zero to 75mmHg revealed statistical association with death after trauma. Until hospital discharge the SBP absence in scene evaluation remained in the model. The prehospital intravenous fluid refilling was the only factor of protector value to death risk in all moments
|
19 |
Comparação entre alguns métodos estatísticos em análise de sobrevivência: aplicação em uma coorte de pacientes com câncer de pênis / Comparison of some statistical methods in survival analysis: application in a cohort of patients with penile cancerMaria do Rosario Dias de Oliveira Latorre 05 June 1996 (has links)
O objetivo deste trabalho foi comparar o desempenho do modelo de riscos proporcionais de Cox convencional, modelo de Cox modificado quando os riscos não são proporcionais e o modelo de análise de sobrevida baseado na teoria de processos de contagem. Para tanto utilizou-se uma coorte de 648 pacientes portadores de câncer de pênis, atendidos no Departamento de Cirurgia Pélvica do Hospital A. C. Camargo, no período de 1953 a 1985. Dessa coorte foram selecionadas três amostras com o objetivo de validar internamente os resultados da análise de sobrevida do banco de dados original. Os resultados do modelo de riscos proporcionais de Cox, no banco de dados original, foram confirmados por uma das amostras desse conjunto de dados. Apenas o estadiamento N foi confirmado como fator prognóstico também nas outras duas amostras. O modelo de riscos proporcionais de Cox e o modelo de análise de sobrevida baseado na teoria de processos de contagem apresentaram resultados semelhantes, na definição dos fatores prognósticos dessa coorte de pacientes com câncer de pênis. O modelo utilizando processos de contagem é mais sofisticado, do ponto de vista matemático. Porém o modelo de Cox está disponível em grande número de pacotes estatísticos e a interpretação de seus coeficientes se faz com maior facilidade. Por isso, talvez, continue a ser a técnica estatística mais utilizada quando o objetivo do estudo é definir fatores prognósticos e grupos de risco. Os fatores prognósticos para a sobrevida de pacientes com câncer de pênis foram os estadiamentos T e N e o grau de diferenciação do tumor. Esses resultados foram ajustados pelo ano de início de tratamento no Hospital A.C. Camargo. Os pacientes com prognóstico favorável foram os que apresentaram tumor pequeno, sem presença de linfonodos clinicamente positivos, e tumor bem diferenciado. / The aim of this study was to compare the performance of the Cox proportional hazards model, the Cox model with time-dependent covariates and the survival model using the counting process theory. These methods were applied in a cohort of 648 patients with penile cancer treated at the Department of Pelvic Surgery, Hospital A.C. Camargo (São Paulo-Brazil), between 1953 and 1985. Three samples were selected from the total database in order to check the internal validity. The prognostic factors selected using the Cox proportional hazards model were the same in one sample. The only prognostic factor selected in all samples was the N stage. The T and N stages, and the grade of differentiation were independent prognostic factors of survival using both the Cox proportional hazards model and the survival,model using the counting process theory. The statistical significance was the same and even the values of estimation of the coefficients were very close. The survival model using the counting process is more sophisticated from the mathematical point of view, but the Cox model is more available in statistical software, and, probably because of this, is more applied in survival analysis than the model using the counting processo Patients with small tumors, clinically negatives nodes and well differentiated tumors showed a favorable prognosis. These results were adjusted by year of the beginning in the study.
|
20 |
Processus empiriques pour l'inférence dans le modèle de survie à risques non proportionnels / Empirical processes for inference in the non-proportional hazards modelChauvel, Cecile 01 December 2014 (has links)
Nous nous intéressons à des processus empiriques particuliers pour l'inférence dans le modèle à risques non proportionnels. Ce modèle permet au coefficient de régression de varier avec le temps et généralise le modèle à risques proportionnels très utilisé pour modéliser des données de survie. Le processus du score standardisé que nous étudions est une somme séquentielle des résidus standardisés du modèle. Le processus est considéré en présence d'une covariable dans le modèle, avant d'être étendu au cas de multiples covariables pouvant être corrélées. Le plan du manuscrit se décompose en trois parties. Dans un premier temps, nous établissons les propriétés limites du processus sous le modèle et sous un modèle mal spécifié. Dans une deuxième partie, nous utilisons les résultats de convergence du processus pour dériver des tests de la valeur du paramètre du modèle. Nous montrons qu'un des tests proposés est asymptotiquement équivalent au test de référence du log-rank pour comparer les fonctions de survie de plusieurs groupes de patients. Nous construisons des tests plus puissants que le test du log-rank sous certaines alternatives. Enfin, dans la dernière partie, nous étudions comment lier prédiction et adéquation dans le modèle à risques non proportionnels. Nous proposons une méthode de construction d'un modèle bien ajusté en maximisant sa capacité prédictive. Aussi, nous introduisons un test d'adéquation du modèle à risques proportionnels. Les performances des méthodes proposées, qu'il s'agisse des tests sur le paramètre ou de l'adéquation du modèle, sont comparées à des méthodes de référence par des simulations. Les méthodes sont illustrées sur des données réelles. / In this thesis, we focus on particular empirical processes on which we can base inference in the non-proportional hazards model. This time-varying coefficient model generalizes the widely used proportional hazards model in the field of survival analysis. Our focus is on the standardized score process that is a sequential sum of standardized model-based residuals. We consider first the process with one covariate in the model, before looking at its extension for multiple and possibly correlated covariates. The outline of the manuscript is composed of three parts. In the first part, we establish the limit properties of the process under the model as well as under a misspecified model. In the second part, we use these convergence results to derive tests for the value of the model parameter. We show that one proposed test is asymptotically equivalent to the log-rank test, which is a benchmark for comparing survival experience of two or more groups. We construct more powerful tests under some alternatives. Finally, in the last part, we propose a methodology linking prediction and goodness of fit in order to construct models. The resulting models will have a good fit and will optimize predictive ability. We also introduce a goodness-of-fit test of the proportional hazards model. The performances of our methods, either tests for the parameter value or goodness-of-fit tests, are compared to standard methods via simulations. The methods are illustrated on real life datasets.
|
Page generated in 0.1055 seconds