• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 43
  • 33
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 201
  • 40
  • 29
  • 28
  • 24
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Discriminating the Effects of Vineyard Management Practices on Grape and Wine Volatiles from Cabernet Franc and Merlot Grape Varieties Using Electronic Nose Systems

Devarajan, Yamuna Swetha 14 October 2009 (has links)
Vineyard management practices are known to affect fruit composition and resultant wines, in part, by altering fruit volatiles. Methods currently used to evaluate the impact of vineyard practices on grape/wine composition include measuring physico-chemistry indices and performing wine sensory analyses. These activities are both time-consuming and destructive. Two electronic nose (ENose) systems: a hand-held conducting polymer-based and a portable surface acoustic wave-based systems were investigated as grape monitoring tools. Vineyard treatments included the effect of canopy side (East vs. West and North vs. South), cluster thinning (unthinned, 1 cluster/shoot, and 1 & 2 cluster/shoot) and ethanol spray (5% v/v) on Cabernet franc, Merlot and both varieties respectively. ENose data were obtained in the field (over two growing seasons for canopy side and in 2008 for cluster thinning and ethanol spray) and laboratory (2007 for canopy side), across different sampling dates and compared with nine-grape/eight-wine chemistry assays, GC/MS (cluster thinning) and wine aroma sensory evaluations (triangular difference testing). ENose results demonstrated 100% significant differences between all Cabernet franc and Merlot treatments. Grape/wine chemistry indices, for both Cabernet franc and Merlot, did not differ among treatments (except ethanol treatment) across sampling dates or growing seasons and vineyard management practices. Wine aroma sensory evaluations demonstrated only limited differences (3 out of 8 comparisons: East vs. West, 1 cluster/shoot vs. 1 & 2 clusters/shoot and 1 cluster/shoot and 1 & 2 clusters/shoot). The high level of discrimination by ENose systems may provide opportunities to enhance the understanding of vineyard management activities. / Master of Science
42

Historical eruptions of Lanzarote, Canary Islands : Inference of magma source and melt generation from olivine and its melt inclusions / Les éruptions historiques de Lanzarote, Iles Canaries : contribution des inclusions vitreuses à la compréhension de la formation des liquides primitives et leur sources

Gomez-Ulla Rubira, Alejandra 25 September 2018 (has links)
L’étude des basaltes des îles océaniques (OIB) révèle la complexité du manteau terrestre, dont la composition chimique est hautement variable. Décrypter l’implication des lithologies des roches sources et des processus à l’origine des OIB est complexe car les magmas sont transformés lors de leur ascension jusqu’à la surface. Ceci est particulièrement critique dans le cas des îles Canaries, où la lithosphère est considérée comme particulièrement épaisse (>110 km Fullea et al., 2015). Afin de mieux contraindre la composition chimique des magmas primitifs et les lithologies mantelliques plausiblement impliquées, deux éruptions historiques de l’île de Lanzarote, les éruptions de Timanfaya (1730-1736) et celles de 1824, ont été étudiées. En effet, ces deux éruptions offrent une opportunité unique d’étudier les mécanismes de génération des magmas et leurs compositions dans un contexte où le manteau est hétérogène. L’éruption de historique de Timanfaya (1730-1736) a émis des magmas qui ont évolué de basanites à basaltes alcalins, pour atteindre des compositions tholeitiques à la fin de l’éruption. La dernière éruption de l’île, en 1824, a produit des basanites extrêmement riches en volatils. L’hétérogénéité du manteau est démontrée à l’extrême à Lanzarote où une seule éruption présente une variation de compositions chimiques équivalente à la diversité de celles des OIB dans le monde. L’extrême hétérogénéité est systématique pour les compositions des roches totales et des téphras à l’échelle d’une éruption, mais est encore amplifiée à l’échelle du minéral et des inclusions magmatiques contenus dans un même échantillon de téphra.Les concentrations des éléments traces et leurs rapports dans l’olivine (e.g. Ni, Mn et Ca) sont de précieux marqueurs des lithologies mantelliques à l’origine des magmas. En effet, les rapports Ni x (FeO/MgO), corrigé du fractionnement, et Fe/Mn sont des indicateurs de lithologies avec ou sans olivines. Il est considéré qu’ils peuvent montrer, dans la plupart des cas, l’ajout d’un liquide magmatique dérivé d’une pyroxénite dans les magmas primaires. La mesure des compositions des éléments traces des olivines des éruptions de 1730-1736 et de 1824 montrent les implications variables de plusieurs lithologies mantelliques au cours du temps. Lors de la fusion d’une lithologie ne contenant pas d’olivines, comme la pyroxénite, de hautes teneurs en Ni et de faibles teneurs en Mn et Ca sont attendues. Les basanites de Lanzarote présentent les plus grandes variations géochimiques, couvrant le champ compositionnel des olivines des MORB et des OIB du monde entier, tandis que les produits plus tardifs, c’est-à-dire les basaltes alcalins et les tholéites, ont des teneurs typiques de liquides magmatiques dérivés de pyroxénites. Les teneurs en forstérite (Fo) des olivines diminuent systématiquement avec le temps durant l’éruption de 1730-1736 et la proportion de liquide primaire saturé en silice augmente dans les mélanges de magmas primitifs avec le temps. A la fin de l’éruption, les magmas tholéitiques cristallisent des olivines dont la teneur en Fo est faible, alors que les concentrations en Mn et Ca augmentent simultanément avec le rapport Ca/Al pour des rapports Fe/Mn et Ni x (FeO/MgO) relativement constants. Ces observations sont expliquées par une augmentation de la fusion par décompression à température légèrement plus faible. D’autre part, les basanites de l’éruption de 1824 possèdent les olivines ayant les teneurs en Fo les plus élevées, et des teneurs en éléments traces dépassant la variabilité des basanites de l’éruption de Timanfaya. Le fait que les basanites de Lanzarote contiennent des olivines dont les compositions en éléments traces recouvrant le champ des MORB et des liquides pyroxènitiques est expliqué par la fusion d’une source contenant des lithologies hétérogènes, induite par un flux de CO2, générant ainsi des magmas aux compositions diverses. (...) / The study of oceanic island basalts (OIB) reveals the complexity of the mantle, which composition is highly variable. Deciphering the source lithologies and processes involved in the OIB formation is challenging since the magmas are transformed on their way to the surface. This is especially critical at Canary Islands where the lithosphere is thought to be remarkably thick (>110 km Fullea et al., 2015). In order to better constrain the composition of primitive magmas and the plausible mantle lithologies involved, two historical eruptions recorded at Lanzarote island, Timanfaya 1730-1736 and 1824 eruptions have been investigated. Indeed, these two eruptions offer a unique opportunity to investigate the mechanisms of magma generation and composition in the context of mantle heterogeneity. The Timanfaya, 1730-1736 historical eruption emitted magmas that evolved from basanites through alkali basalts, finally reaching tholeiitic compositions at the end of the eruption. In 1824 the last eruption on the island produced extremely volatile-rich basanite. The heterogeneity of the mantle is demonstrated to the extreme in Lanzarote where a single eruption exhibits compositional variations similar to the span of the OIB worldwide. The extreme heterogeneity is systematic from whole rock lava and tephra at eruption scale but amplified at mineral and melt inclusion scale within a single tephra sample of the eruption.The use of trace element concentrations and ratios of olivine (e.g. Ni, Mn, and Ca) are valuable indicators of the mantle source lithology, namely, the fractionation-corrected Ni x (FeO/MgO) and Fe/Mn as probes of olivine absent or present lithologies, often taken as pyroxenite-derived component in mixtures of primary melts. The measured trace element concentrations in olivine from the 1730-1736 and 1824 eruptions reveal variable mantle lithologies involved in the magma generation with time. Higher Ni and lower Mn and Ca contents are expected when melting Ol-free source, such as pyroxenite lithologies. The basanites exhibit the largest variation covering the range of olivine in MORB and OIB worldwide whereas later produced alkali-basalts and tholeites have values typically expected from pyroxenite derived melts. The Fo content decreases systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with lower Fo content, whereas those concentrations of Mn and Ca increased together with Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at slightly lower temperature. The basanite from the eruption that took place in 1824 has olivine with the highest Fo content and trace element variability expanding the range of the Timanfaya basanite. The fact that Lanzarote basanites contain olivine with trace element systematic spanning that of MORB and pyroxenite melt is explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. In addition, early reactive porous flow through the depleted oceanic lithosphere and equilibration with harzburgite restite caused Ni depletion of the earliest percolating pyroxenite melt from which olivine crystallized and probably leaving dunite channels. After the channel formation mantle nodules could be brought to the surface. The fact that olivine compositions and basanite magma were reproduced approximately a century later may reflect episodic carbonatic fluxing in the slowly uprising Canarian mantle plume. (...)
43

Investigation of New Zealand Sauvignon Blanc Wine Using Trained Sensory Panels

Lund, Cynthia M. January 2009 (has links)
ABSTRACT A core tool of sensory science is the use of trained descriptive panels. This research describes an investigation into the role of motivation in the performance of trained panels and the use of a trained panel to develop a better understanding of the perception of Sauvignon blanc wines. Substantial investment in time and money is directed towards ensuring trained panels perform optimally. Having selected a panel, the panel leader needs to ensure that panellists provide accurate, reliable data. Panellist motivation is also an important factor to consider. While performance psychology, education and sport science fields have researched motivation extensively, knowledge about panellist motivation within sensory science is limited. However, findings from existing research in these other areas - which suggest an important role for autonomy, competence and relatedness - can be applied to sensory panels in order to increase intrinsic motivation. The initial part of the research investigated the fundamental factors that affect and influence panellists’ motivation and participation. A survey (n=74) revealed that extra income and a general interest in food were the key drivers in inspiring people to become panellists, whilst enjoyment in being a panellist, interest in food, and extra income were key drivers for people to remain panellists. In a second survey, the intrinsic motivation of seven trained panels from four countries (n=108) was assessed. External panels were found to be more intrinsically motivated than internal panels. Experienced panellists had an increased perception of competence, which is a key factor for people to be intrinsically motivated. Understanding motivational frameworks currently used in other research fields and integrating them into existing panel training protocols may enhance and sustain panellists’ intrinsic motivation. A trained panel (n=14) was then used in the second part of the thesis to identify key flavours in Sauvignon blanc wines from Australia, France, New Zealand, Spain, South Africa and USA. Sixteen characteristics were identified and measured, including sweet sweaty passionfruit, capsicum, passionfruit skin/stalk, boxwood/cat’s urine, grassy, mineral/flinty, citrus, bourbon, apple lolly/candy, tropical, mint, fresh asparagus, canned asparagus, stonefruit, apple and snowpea. Principal component analysis was used to describe differences between regions and countries. Sauvignon blanc wines from Marlborough, New Zealand (NZ), were described by tropical and sweet sweaty passionfruit characteristics, while French and South African Sauvignon blanc wines were described as having flinty/mineral and bourbon-like flavors. Chemical analyses of these wines also showed that Marlborough, NZ wines had more methoxypyrazine and thiol compounds. A consumer study (n=109) showed that New Zealanders significantly prefer New Zealand style Sauvignon blanc. The final part of this research focused on using trained panellists to explore the interactions between volatile and non-volatile wine compounds and their effects on the aroma profile of New Zealand Sauvignon blanc wine. Four volatile aroma compounds that are important in New Zealand Sauvignon blanc wine were studied (isobutyl methoxypyrazine [MIBP], 3-mercaptohexanol [3MH], 3-mercaptohexanol acetate [3MHA], and ethyl decanoate). Each of these four aroma compounds were assessed in combination with three non-volatile polyphenolic compounds commonly found in Sauvignon blanc wine: catechin, caffeic acid and quercetin. Results showed each polyphenol had a unique effect when blended with a specific aroma compound, either suppressing, accentuating, or showing little effect on the perception of the aroma compounds. The perception of MIBP, 3MH, and ethyl decanoate were largely suppressed by the added polyphenols, with a few exceptions. The perception of 3MH was accentuated with the addition of caffeic acid, and the perception of 3MHA was accentuated with the addition of catechin. The interactive effects of aroma compounds with polyphenols likely reflect non-covalent associations in the wine solution that reduce the volatility of the aroma compounds. With an understanding of the interactive effects of volatile and non-volatile compounds in wine, winemakers might optimize the impact of selected volatile compounds by managing polyphenol levels, supporting their efforts to attain desirable wine aroma profiles.
44

Stress Related Emissions of Norway Spruce Plants

Pettersson, Marie January 2007 (has links)
<p>The interactions between plants and insects are mediated by volatile molecules. Plants respond to stress by biosynthesis of chemical substances which can deter invading insects or pathogens. Some of these substances are volatile and are emitted to the surroundings and may attract or repel insects. Information about the susceptibility of individual plants to infestation, their volatile emissions and chemical defence is of interest, for example in selecting plants for tree breeding programs.</p><p>This research was focused on finding volatile chemical markers of resistance in Norway spruce plants that do influence insects associated to conifers. Collection of headspace volatiles by SPME followed by separation and identification with GC-MS is effective in investigating biological systems with a minimum of disturbance. This method has here been used to investigate Norway spruce plants of different ages and stress conditions as well as trapping semiochemicals like nepetalactone emitted by the spruce shoot aphids. It was even possible to analyse the emission of single needles <i>in vivo</i> and obtain a chemical pattern of the site of the stress reaction. Seedlings of different ages showed differences in chemical composition of emitted volatiles, with the pine weevil repellent (<i>S</i>)-(-)-limonene as one of the main compounds. Wounded phloem of conventional plants emitted high amounts of monoterpenes while the phloem of mini plants emitted (3Z)-hexenal and (3Z)-hexen-1-ol.</p><p>Norway spruce plants did respond to different stress elicitors with similar response, regardless of their genetic origin. The emissions from stressed Norway spruce plants mainly consist of (<i>E</i>)-β-farnesene, (<i>E,E</i>)-α-farnesene, (<i>E</i>)-α-bisabolene, (<i>R</i>)-(-)-linalool and methyl salicylate. Emissions from live spruce shoot aphids were detected during autumn periods, and a method to separate and identify the four diastereomers of nepetalactone by GC-MS and characteristic m/z-fragments was accomplished.</p>
45

Investigation of New Zealand Sauvignon Blanc Wine Using Trained Sensory Panels

Lund, Cynthia M. January 2009 (has links)
ABSTRACT A core tool of sensory science is the use of trained descriptive panels. This research describes an investigation into the role of motivation in the performance of trained panels and the use of a trained panel to develop a better understanding of the perception of Sauvignon blanc wines. Substantial investment in time and money is directed towards ensuring trained panels perform optimally. Having selected a panel, the panel leader needs to ensure that panellists provide accurate, reliable data. Panellist motivation is also an important factor to consider. While performance psychology, education and sport science fields have researched motivation extensively, knowledge about panellist motivation within sensory science is limited. However, findings from existing research in these other areas - which suggest an important role for autonomy, competence and relatedness - can be applied to sensory panels in order to increase intrinsic motivation. The initial part of the research investigated the fundamental factors that affect and influence panellists’ motivation and participation. A survey (n=74) revealed that extra income and a general interest in food were the key drivers in inspiring people to become panellists, whilst enjoyment in being a panellist, interest in food, and extra income were key drivers for people to remain panellists. In a second survey, the intrinsic motivation of seven trained panels from four countries (n=108) was assessed. External panels were found to be more intrinsically motivated than internal panels. Experienced panellists had an increased perception of competence, which is a key factor for people to be intrinsically motivated. Understanding motivational frameworks currently used in other research fields and integrating them into existing panel training protocols may enhance and sustain panellists’ intrinsic motivation. A trained panel (n=14) was then used in the second part of the thesis to identify key flavours in Sauvignon blanc wines from Australia, France, New Zealand, Spain, South Africa and USA. Sixteen characteristics were identified and measured, including sweet sweaty passionfruit, capsicum, passionfruit skin/stalk, boxwood/cat’s urine, grassy, mineral/flinty, citrus, bourbon, apple lolly/candy, tropical, mint, fresh asparagus, canned asparagus, stonefruit, apple and snowpea. Principal component analysis was used to describe differences between regions and countries. Sauvignon blanc wines from Marlborough, New Zealand (NZ), were described by tropical and sweet sweaty passionfruit characteristics, while French and South African Sauvignon blanc wines were described as having flinty/mineral and bourbon-like flavors. Chemical analyses of these wines also showed that Marlborough, NZ wines had more methoxypyrazine and thiol compounds. A consumer study (n=109) showed that New Zealanders significantly prefer New Zealand style Sauvignon blanc. The final part of this research focused on using trained panellists to explore the interactions between volatile and non-volatile wine compounds and their effects on the aroma profile of New Zealand Sauvignon blanc wine. Four volatile aroma compounds that are important in New Zealand Sauvignon blanc wine were studied (isobutyl methoxypyrazine [MIBP], 3-mercaptohexanol [3MH], 3-mercaptohexanol acetate [3MHA], and ethyl decanoate). Each of these four aroma compounds were assessed in combination with three non-volatile polyphenolic compounds commonly found in Sauvignon blanc wine: catechin, caffeic acid and quercetin. Results showed each polyphenol had a unique effect when blended with a specific aroma compound, either suppressing, accentuating, or showing little effect on the perception of the aroma compounds. The perception of MIBP, 3MH, and ethyl decanoate were largely suppressed by the added polyphenols, with a few exceptions. The perception of 3MH was accentuated with the addition of caffeic acid, and the perception of 3MHA was accentuated with the addition of catechin. The interactive effects of aroma compounds with polyphenols likely reflect non-covalent associations in the wine solution that reduce the volatility of the aroma compounds. With an understanding of the interactive effects of volatile and non-volatile compounds in wine, winemakers might optimize the impact of selected volatile compounds by managing polyphenol levels, supporting their efforts to attain desirable wine aroma profiles.
46

Investigation of New Zealand Sauvignon Blanc Wine Using Trained Sensory Panels

Lund, Cynthia M. January 2009 (has links)
ABSTRACT A core tool of sensory science is the use of trained descriptive panels. This research describes an investigation into the role of motivation in the performance of trained panels and the use of a trained panel to develop a better understanding of the perception of Sauvignon blanc wines. Substantial investment in time and money is directed towards ensuring trained panels perform optimally. Having selected a panel, the panel leader needs to ensure that panellists provide accurate, reliable data. Panellist motivation is also an important factor to consider. While performance psychology, education and sport science fields have researched motivation extensively, knowledge about panellist motivation within sensory science is limited. However, findings from existing research in these other areas - which suggest an important role for autonomy, competence and relatedness - can be applied to sensory panels in order to increase intrinsic motivation. The initial part of the research investigated the fundamental factors that affect and influence panellists’ motivation and participation. A survey (n=74) revealed that extra income and a general interest in food were the key drivers in inspiring people to become panellists, whilst enjoyment in being a panellist, interest in food, and extra income were key drivers for people to remain panellists. In a second survey, the intrinsic motivation of seven trained panels from four countries (n=108) was assessed. External panels were found to be more intrinsically motivated than internal panels. Experienced panellists had an increased perception of competence, which is a key factor for people to be intrinsically motivated. Understanding motivational frameworks currently used in other research fields and integrating them into existing panel training protocols may enhance and sustain panellists’ intrinsic motivation. A trained panel (n=14) was then used in the second part of the thesis to identify key flavours in Sauvignon blanc wines from Australia, France, New Zealand, Spain, South Africa and USA. Sixteen characteristics were identified and measured, including sweet sweaty passionfruit, capsicum, passionfruit skin/stalk, boxwood/cat’s urine, grassy, mineral/flinty, citrus, bourbon, apple lolly/candy, tropical, mint, fresh asparagus, canned asparagus, stonefruit, apple and snowpea. Principal component analysis was used to describe differences between regions and countries. Sauvignon blanc wines from Marlborough, New Zealand (NZ), were described by tropical and sweet sweaty passionfruit characteristics, while French and South African Sauvignon blanc wines were described as having flinty/mineral and bourbon-like flavors. Chemical analyses of these wines also showed that Marlborough, NZ wines had more methoxypyrazine and thiol compounds. A consumer study (n=109) showed that New Zealanders significantly prefer New Zealand style Sauvignon blanc. The final part of this research focused on using trained panellists to explore the interactions between volatile and non-volatile wine compounds and their effects on the aroma profile of New Zealand Sauvignon blanc wine. Four volatile aroma compounds that are important in New Zealand Sauvignon blanc wine were studied (isobutyl methoxypyrazine [MIBP], 3-mercaptohexanol [3MH], 3-mercaptohexanol acetate [3MHA], and ethyl decanoate). Each of these four aroma compounds were assessed in combination with three non-volatile polyphenolic compounds commonly found in Sauvignon blanc wine: catechin, caffeic acid and quercetin. Results showed each polyphenol had a unique effect when blended with a specific aroma compound, either suppressing, accentuating, or showing little effect on the perception of the aroma compounds. The perception of MIBP, 3MH, and ethyl decanoate were largely suppressed by the added polyphenols, with a few exceptions. The perception of 3MH was accentuated with the addition of caffeic acid, and the perception of 3MHA was accentuated with the addition of catechin. The interactive effects of aroma compounds with polyphenols likely reflect non-covalent associations in the wine solution that reduce the volatility of the aroma compounds. With an understanding of the interactive effects of volatile and non-volatile compounds in wine, winemakers might optimize the impact of selected volatile compounds by managing polyphenol levels, supporting their efforts to attain desirable wine aroma profiles.
47

Investigation of New Zealand Sauvignon Blanc Wine Using Trained Sensory Panels

Lund, Cynthia M. January 2009 (has links)
ABSTRACT A core tool of sensory science is the use of trained descriptive panels. This research describes an investigation into the role of motivation in the performance of trained panels and the use of a trained panel to develop a better understanding of the perception of Sauvignon blanc wines. Substantial investment in time and money is directed towards ensuring trained panels perform optimally. Having selected a panel, the panel leader needs to ensure that panellists provide accurate, reliable data. Panellist motivation is also an important factor to consider. While performance psychology, education and sport science fields have researched motivation extensively, knowledge about panellist motivation within sensory science is limited. However, findings from existing research in these other areas - which suggest an important role for autonomy, competence and relatedness - can be applied to sensory panels in order to increase intrinsic motivation. The initial part of the research investigated the fundamental factors that affect and influence panellists’ motivation and participation. A survey (n=74) revealed that extra income and a general interest in food were the key drivers in inspiring people to become panellists, whilst enjoyment in being a panellist, interest in food, and extra income were key drivers for people to remain panellists. In a second survey, the intrinsic motivation of seven trained panels from four countries (n=108) was assessed. External panels were found to be more intrinsically motivated than internal panels. Experienced panellists had an increased perception of competence, which is a key factor for people to be intrinsically motivated. Understanding motivational frameworks currently used in other research fields and integrating them into existing panel training protocols may enhance and sustain panellists’ intrinsic motivation. A trained panel (n=14) was then used in the second part of the thesis to identify key flavours in Sauvignon blanc wines from Australia, France, New Zealand, Spain, South Africa and USA. Sixteen characteristics were identified and measured, including sweet sweaty passionfruit, capsicum, passionfruit skin/stalk, boxwood/cat’s urine, grassy, mineral/flinty, citrus, bourbon, apple lolly/candy, tropical, mint, fresh asparagus, canned asparagus, stonefruit, apple and snowpea. Principal component analysis was used to describe differences between regions and countries. Sauvignon blanc wines from Marlborough, New Zealand (NZ), were described by tropical and sweet sweaty passionfruit characteristics, while French and South African Sauvignon blanc wines were described as having flinty/mineral and bourbon-like flavors. Chemical analyses of these wines also showed that Marlborough, NZ wines had more methoxypyrazine and thiol compounds. A consumer study (n=109) showed that New Zealanders significantly prefer New Zealand style Sauvignon blanc. The final part of this research focused on using trained panellists to explore the interactions between volatile and non-volatile wine compounds and their effects on the aroma profile of New Zealand Sauvignon blanc wine. Four volatile aroma compounds that are important in New Zealand Sauvignon blanc wine were studied (isobutyl methoxypyrazine [MIBP], 3-mercaptohexanol [3MH], 3-mercaptohexanol acetate [3MHA], and ethyl decanoate). Each of these four aroma compounds were assessed in combination with three non-volatile polyphenolic compounds commonly found in Sauvignon blanc wine: catechin, caffeic acid and quercetin. Results showed each polyphenol had a unique effect when blended with a specific aroma compound, either suppressing, accentuating, or showing little effect on the perception of the aroma compounds. The perception of MIBP, 3MH, and ethyl decanoate were largely suppressed by the added polyphenols, with a few exceptions. The perception of 3MH was accentuated with the addition of caffeic acid, and the perception of 3MHA was accentuated with the addition of catechin. The interactive effects of aroma compounds with polyphenols likely reflect non-covalent associations in the wine solution that reduce the volatility of the aroma compounds. With an understanding of the interactive effects of volatile and non-volatile compounds in wine, winemakers might optimize the impact of selected volatile compounds by managing polyphenol levels, supporting their efforts to attain desirable wine aroma profiles.
48

Investigation of New Zealand Sauvignon Blanc Wine Using Trained Sensory Panels

Lund, Cynthia M. January 2009 (has links)
ABSTRACT A core tool of sensory science is the use of trained descriptive panels. This research describes an investigation into the role of motivation in the performance of trained panels and the use of a trained panel to develop a better understanding of the perception of Sauvignon blanc wines. Substantial investment in time and money is directed towards ensuring trained panels perform optimally. Having selected a panel, the panel leader needs to ensure that panellists provide accurate, reliable data. Panellist motivation is also an important factor to consider. While performance psychology, education and sport science fields have researched motivation extensively, knowledge about panellist motivation within sensory science is limited. However, findings from existing research in these other areas - which suggest an important role for autonomy, competence and relatedness - can be applied to sensory panels in order to increase intrinsic motivation. The initial part of the research investigated the fundamental factors that affect and influence panellists’ motivation and participation. A survey (n=74) revealed that extra income and a general interest in food were the key drivers in inspiring people to become panellists, whilst enjoyment in being a panellist, interest in food, and extra income were key drivers for people to remain panellists. In a second survey, the intrinsic motivation of seven trained panels from four countries (n=108) was assessed. External panels were found to be more intrinsically motivated than internal panels. Experienced panellists had an increased perception of competence, which is a key factor for people to be intrinsically motivated. Understanding motivational frameworks currently used in other research fields and integrating them into existing panel training protocols may enhance and sustain panellists’ intrinsic motivation. A trained panel (n=14) was then used in the second part of the thesis to identify key flavours in Sauvignon blanc wines from Australia, France, New Zealand, Spain, South Africa and USA. Sixteen characteristics were identified and measured, including sweet sweaty passionfruit, capsicum, passionfruit skin/stalk, boxwood/cat’s urine, grassy, mineral/flinty, citrus, bourbon, apple lolly/candy, tropical, mint, fresh asparagus, canned asparagus, stonefruit, apple and snowpea. Principal component analysis was used to describe differences between regions and countries. Sauvignon blanc wines from Marlborough, New Zealand (NZ), were described by tropical and sweet sweaty passionfruit characteristics, while French and South African Sauvignon blanc wines were described as having flinty/mineral and bourbon-like flavors. Chemical analyses of these wines also showed that Marlborough, NZ wines had more methoxypyrazine and thiol compounds. A consumer study (n=109) showed that New Zealanders significantly prefer New Zealand style Sauvignon blanc. The final part of this research focused on using trained panellists to explore the interactions between volatile and non-volatile wine compounds and their effects on the aroma profile of New Zealand Sauvignon blanc wine. Four volatile aroma compounds that are important in New Zealand Sauvignon blanc wine were studied (isobutyl methoxypyrazine [MIBP], 3-mercaptohexanol [3MH], 3-mercaptohexanol acetate [3MHA], and ethyl decanoate). Each of these four aroma compounds were assessed in combination with three non-volatile polyphenolic compounds commonly found in Sauvignon blanc wine: catechin, caffeic acid and quercetin. Results showed each polyphenol had a unique effect when blended with a specific aroma compound, either suppressing, accentuating, or showing little effect on the perception of the aroma compounds. The perception of MIBP, 3MH, and ethyl decanoate were largely suppressed by the added polyphenols, with a few exceptions. The perception of 3MH was accentuated with the addition of caffeic acid, and the perception of 3MHA was accentuated with the addition of catechin. The interactive effects of aroma compounds with polyphenols likely reflect non-covalent associations in the wine solution that reduce the volatility of the aroma compounds. With an understanding of the interactive effects of volatile and non-volatile compounds in wine, winemakers might optimize the impact of selected volatile compounds by managing polyphenol levels, supporting their efforts to attain desirable wine aroma profiles.
49

Role of Fungal and Host-Associated Volatiles in the Chemical Ecology of Scolytine Beetles Affecting Hardwood Trees

Matthew W Ethington (10731882) 30 April 2021 (has links)
<div>Native and invasive bark and ambrosia beetles threaten the health and productivity of natural and planted forests worldwide. Management of these pests relies on semiochemical-based tactics, but these are often ineffective at monitoring for incipient populations or decreasing pest populations. The role of fungal and non-host volatiles in colonization behavior remains unknown for many important bark and ambrosia beetle species, thereby hindering their control. In this dissertation, I tested the hypothesis that fungal and tree-associated volatiles influence the host colonization behavior of bark and ambrosia beetles that affect hardwood trees. This work describes the identification of novel fungal and host-associated semiochemicals that may aid in future management of these important pests.</div><div><br></div><div>In Chapter 1, I review the current literature describing the volatile chemical ecology of bark and ambrosia beetles that inhabit hardwood trees. A review of groups with numerous identified semiochemicals, as well as considerations for future research is included.</div><div><br></div><div>In Chapter 2, I test the hypothesis that host colonization by the peach bark beetle (Phloeotribus liminaris) is chemically mediated by compounds associated with infested hosts. I found that benzaldehyde mediates colonization by the peach bark beetle, and that that benzaldehyde lures are effective attractants in field-trapping studies.</div><div><br></div><div>In Chapter 3, I test the hypothesis that ambrosia beetle attraction to host stress compounds can be modified by symbiotic fungal volatiles. I found that for three species of invasive ambrosia beetles individual fungal volatiles act as repellents, with species-specific differences in response to different compounds.</div><div><br></div><div>In Chapter 4, I test the hypothesis that attraction of the walnut twig beetle (Pityophthorus juglandis) to its pheromone lure can be enhanced by symbiotic fungal volatiles. I found that symbiotic fungal volatiles consistently enhance attraction of the beetles to their fungus, while one symbiotic fungal volatile of ambrosia beetle species repelled the walnut twig beetle.</div><div><br></div><div>In Chapter 5, I summarize results from each of the chapters and discuss patterns observed in the response to fungal and host-associated volatiles among the focal bark and ambrosia beetle species. I also discuss future research needs and directions to continue development of the knowledge surrounding scolytine chemical ecology and management of these pest beetle species.</div>
50

Stress Related Emissions of Norway Spruce Plants

Pettersson, Marie January 2007 (has links)
The interactions between plants and insects are mediated by volatile molecules. Plants respond to stress by biosynthesis of chemical substances which can deter invading insects or pathogens. Some of these substances are volatile and are emitted to the surroundings and may attract or repel insects. Information about the susceptibility of individual plants to infestation, their volatile emissions and chemical defence is of interest, for example in selecting plants for tree breeding programs. This research was focused on finding volatile chemical markers of resistance in Norway spruce plants that do influence insects associated to conifers. Collection of headspace volatiles by SPME followed by separation and identification with GC-MS is effective in investigating biological systems with a minimum of disturbance. This method has here been used to investigate Norway spruce plants of different ages and stress conditions as well as trapping semiochemicals like nepetalactone emitted by the spruce shoot aphids. It was even possible to analyse the emission of single needles in vivo and obtain a chemical pattern of the site of the stress reaction. Seedlings of different ages showed differences in chemical composition of emitted volatiles, with the pine weevil repellent (S)-(-)-limonene as one of the main compounds. Wounded phloem of conventional plants emitted high amounts of monoterpenes while the phloem of mini plants emitted (3Z)-hexenal and (3Z)-hexen-1-ol. Norway spruce plants did respond to different stress elicitors with similar response, regardless of their genetic origin. The emissions from stressed Norway spruce plants mainly consist of (E)-β-farnesene, (E,E)-α-farnesene, (E)-α-bisabolene, (R)-(-)-linalool and methyl salicylate. Emissions from live spruce shoot aphids were detected during autumn periods, and a method to separate and identify the four diastereomers of nepetalactone by GC-MS and characteristic m/z-fragments was accomplished.

Page generated in 0.0795 seconds