• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 19
  • 11
  • 10
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nejoninės paviršinio aktyvumo medžiagos (Pam) ir vario (II) jonų sorbcija aktyvintąja anglimi / The sorption of nonionic surfactant and copper (II) ions on activated carbon

Lavrinovič, Ana 13 June 2006 (has links)
The sorption of nonionic surfactant oxyethylated alcohols Lutensol AO – 10 and Cu (II) ions on activated carbon AquaSorb HS has been investigated. The kinetic investigations have revealed that the sorption of nonionic surfactant was the sufficiently slow process and required 7 days to reach equilibrium. The equilibrium sorption of the Cu (II) ions was attained within 24 h. ...
12

CYCLODEXTRIN VERSATILITY

Schneiderman, Eva 11 October 2001 (has links)
No description available.
13

The Antibacterial Activity of Silicone-Polyether Surfactants

Khan, Madiha F. January 2017 (has links)
The increase in microbial resistance to antibiotics underscores the need for novel antibacterial surfaces, particularly for silicone-based implants, because the hydrophobicity of silicones has been linked to undesirable microbial adhesion and biofilm formation. Unfortunately, current strategies for mitigation, such as pretreatment of surfaces with antiseptics/antibiotics, are not consistently effective. In fact, they can facilitate the prevalence of resistant pathogens by exposing bacteria to sublethal concentrations of biocides. Therefore, scientific interest has shifted to preventing initial adhesion (prior to surface colonization) by using surfactants as surface modifiers. Accordingly, Chapter 2 studied the bioactivity of ACR-008 UP (an acrylic-terminated superwetting silicone surfactant) after it was copolymerized in increasing weight percentages with butyl methacrylate (BMA) and/or methyl methacrylate (MMA). Interestingly, copolymers of 20 wt % ACR showed at least 3x less adhesion by Escherichia coli BL21 (E. coli) than any other formulation. This was not a consequence of wettability, which followed a parabolic function with ACR concentration: high contact angles (CA) with sessile water drops were observed at both low (< 20 wt %) and high (> 80 wt %) concentrations of ACR in materials. The CA at 20 wt % ACR was 66°. The lack of E. coli adhesion was ascribed to surfactant-membrane interactions; hence, the antibacterial potential of compounds related to ACR was further probed. Chapter 3, therefore, examines the structure-activity relationships of nonionic silicone polyether surfactants in solution. Azide/alkyne click chemistry was used to prepare a series of eight compounds with consistent hydrophilic tails (8- 44 poly(ethylene glycol) units), but variable hydrophobic heads (branched silicones with 3-10 siloxane linkages, and in two cases phenyl substitutions). The compounds were tested for toxicity at 0.001 w/v %, 2.5 w/v % and their critical micelle concentrations (CMCs), against different concentrations of E. coli in a 3-step assay. Surfactants with smaller head groups had as much as 4x the bioactivity of larger analogues, with the smallest hydrophobe exhibiting potency equivalent to SDS. Smaller PEG chains were similarly associated with higher potency. This data suggests that lower micelle stability, and the theoretically enhanced permeability of smaller silicone head groups in membranes, is linked to antibacterial activity. The results further demonstrate that the simple manipulation of nonionic silicone polyether structures, leads to significant changes in antibacterial action. To ensure similar results were achievable when such surfactants are immobilized on surfaces, 8 compounds with shorter, ethoxysilylpropyl-terminated PEG chains, and branched or linear hydrophobes, were incorporated into a homemade, room temperature vulcanization (RTV) silicone (Chapter 4). The materials, containing 0- 20 wt% surfactants) were then tested for contact killing and cytophobicity against the same E. coli strain. Elastomers modified with 0.5- 1 wt% of (EtO)3Si-PEG- laurate, and separately (EtO)3Si-PEG-tBS, were on average 2x more hydrophilic relative to controls (103°) and differed in their wettability by ~40°, yet both were anti-adhesive; a ~30-fold reduction in adhesion was seen on modified surfaces relative to the control PDMS. Additionally, the (EtO)3Si-PEG-tBS surface demonstrated biocidal behavior, which further highlighted the importance of surfactant chemistry- not just wettability- in observing a specific antibacterial response (if any). Based on the data collated from each Chapter, silicone surfactants seem to have great potential as bioactive agents and warrant further systematic investigations into their mechanisms of action. In so doing, their chemistry may be optimized against different microbes for a variety of applications. In particular, their potential to create non-toxic, cytophobic silicones is particularly encouraging, given the need for anti-adhesive, biofilm preventing material surfaces. / Thesis / Doctor of Philosophy (PhD)
14

Investigation of Hydrogenated and Fluorinated Surfactant Based-Systems for the Design of Porous Silica Materials / Systèmes à base de tensioactifs hydrogénés et fluorés pour la préparation de matériaux poreux silicatés

Du, Na 23 July 2010 (has links)
Ce travail est consacré à l’étude des propriétés de systèmes à base de tensioactifs non ioniques hydrogéné et fluoré dans le but de préparer des matériaux poreux silicatés. L’effet de la solubilisation d’hexadécane ou de décane dans des micelles de C12H25CO(OC2H4)9OCH3 conduit à la formation de silices mésoporeuses à plus larges pores, tandis qu’aucun effet de gonflement n’est observé avec l’ajout de cyclohexane. Lorsque les matériaux sont préparés avec des micelles de C8F17C2H4(OC2H4)9OH, l’ajout de perflorooctylbromure (PFOBr) augmente la taille des mésopores. Par ailleurs, l’incorporation de grandes quantités de PFOBr ou de perfluorodécaline conduit à la formation de macropores. Avec C7F15C2H4(OC2H4)8OH, l’incorporation de (C4F9CH)2 permet d’élargir les mésopores et de créer un réseau de macropores, tandis que l’ajout de PFOBr ne conduit ni à la formation de mésopore, ni à la formation de macropore. Les résultats mettent en évidence que la formation de matériaux macroporeux à partir d’émulsions hydrogénées ou fluorées est favorisée avec les systèmes qui présentent des valeurs de PIT (Température d’Inversion de Phase) élevées. Pour finir, l’effet de l’addition de différents alcools dans le système à base de C8F17C2H4(OC2H4)9OH a été étudié. La détermination des paramètres structuraux de la phase cristal liquide hexagonal, indique que les alcools à courte ou moyenne chaîne jouent le rôle de solvant, tandis que le fluoro-octanol joue celui d’un co-tensioactif. L’addition d’alcools courts provoque la destruction progressive des micelles qui perturbe le mécanisme d’auto-assemblage et les matériaux obtenus présentent des structures vermiformes / This work deals with the study of the properties of nonionic hydrogenated and fluorinated surfactant based systems which are related to the synthesis of porous silica. The effect of the solubilization of low fraction of hexadecane or decane in the micelles of C12H25CO(OC2H4)9OCH3 leads to the formation of large mesoporous silica, whereas no swelling effect was noted with cyclohexane. When the materials are templated by fluorinated micelles of C8F17C2H4(OC2H4)9OH, large pore mesoporous materials are obtained with perfluorooctyl bromide (PFOBr). Both PFOBr and perfluorodecalin give rise to macropores at high oil concentrations. With C7F15C2H4(OC2H4)8OH, the fluorocarbon (C4F9CH)2 is not only an effective expander to enlarge the pore size of mesoporous materials, but also very favourable for the design of macropore network. On the contrary, with PFOBr, there is neither mesopore nor macropore. Therefore, both hydrogenated and fluorinated systems obey to the same rule: the formation of macroporous materials template by emulsions is favoured with systems which exhibit a high value of the PIT. Lastly, alcohols used as additives in the C8F17C2H4(OC2H4)9OH -water system to tune the characteristics of the recovered materials. The structural parameters of the hexagonal liquid crystal show the short and medium alcohols behaved like solvent, while the long chain and fluorinated octanol acted as co-surfactant. The short alcohols provoke a micelle breaking effect. Thus, the self-assembly mechanism is disturbed and wormhole-like structures are recovered
15

SURFACTANT AND METAL SORPTION STUDIES BY FUNCTIONALIZED MEMBRANES AND QUARTZ CRYSTAL MICROBALANCE

Ladhe, Abhay R. 01 January 2008 (has links)
Functionalized membranes provide an elegant platform for selective separations and sorptions. In this dissertation, application of functionalized membranes for surfactant and metal sorption studies are discussed. Sorption behavior of surfactants is also studied using quartz crystal microbalance (QCM) and other techniques. Adsorption of the ethoxylated surfactants on polymeric materials (cotton and polyester) and model gold surface was quantified from a non-aqueous siloxane based solvent (D5) and water. The role of ethylene oxide group and the effect of nature of polymeric materials on adsorption behavior was quantified and established. In the case of gold-water interface, the adsorption data was fitted to calculate adsorption/desorption rate constants. The study is important towards applications involving use of the surfactants in cleaning operations. PAA functionalized membranes were prepared and used for separation of the surfactants from the siloxane solvent. Finally the pH sensitivity of the PAA-surfactant complex was verified by successful regeneration of the membrane on permeation of slightly alkaline water. The preparation and application of thiol and sulfonic acid functionalized silica mixed matrix membranes for aqueous phase metal ion sorption is also studied. The functionalized particles were used as the dispersed phase in the polysulfone or cellulose acetate polymer matrix. The effects of the silica properties such as particle size, specific surface area, and porous/nonporous morphology on the metal ion sorption capacity were studied. Silver and ferrous ions were studied for metal sorption capacities. The ferrous ions were further reduced to prepare membrane immobilized iron nanoparticles which are attractive for catalytic applications. One dimensional unsteady state model with overall volumetric mass transfer coefficient was developed to model the metal ion sorption using mixed matrix membrane. The study demonstrates successful application of the functionalized mixed matrix membranes for aqueous phase metal capture with high capacity at low transmembrane pressures. The technique can be easily extended to other applications by altering the functionalized groups on the silica particles. The study is important towards water treatment applications and preparation of membrane immobilized metal nanoparticles for catalytic applications.
16

Capillary Electrochromatography-Mass Spectrometry (CEC-MS) of Surfactants

Norton, Dean Stephen 06 August 2007 (has links)
This research presents advancements in the coupling of capillary electrochromatography (CEC) to mass spectrometry (MS) for the analysis of different chemical classes of surfactants. Chapter 1 provides a brief introduction that summarizes the mechanics and fundamentals of CEC, including instrumentation and applications for CEC-MS. Chapter 2 describes the on-line hyphenation of a packed CEC column with an internally tapered tip coupled to electrospray ionization-mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) for the analysis of betaine-type amphoteric or zwitterionic surfactants (Zwittergent®). The interesting aspects include CEC-MS column manufacture and charaterization, as well as a comparison between the CEC-ACPI-MS and CEC-ESI-MS ionization pattern of zwittergents. In Chapter 3, the CEC-MS of alkyltrimethyl-ammonium ions (ATMA+) with chain length ranging from C1-C18 is optimized using an internally tapered CEC-MS column packed with mixed mode C6/strong cation exchange stationary phase and coupled to an ESI source. In addition, the optimized CEC-ESI-MS protocol is applied for the challenging analysis of commercial sample Arquad S-50 ATMA+ containing cis-trans unsaturated and saturated soyabean fatty acid derivatives. In Chapter 4, a novel CEC-UV method for separation of the various Triton X-100 oligomers is presented. A systematic mobile phase tuning and comparison of monomeric vs. polymeric stationary phases was conducted. In Chapter 5, we present the first application of CEC coupled to MS for analysis of Triton X (TX-) series surfactants. A characterization from the viewpoint of the ion and adduct formation for TX-series nonionic surfactants with a variable number of ethoxy units (n=1.5-16) in the scan mode are first discussed. Next, utilizing the TX-series as model alkylphenolpolyethoxylates (APEOs), a detailed investigation of the chromatographic separation and MS detection are performed followed by analysis of very long chain TX series with n=30-70. In Chapter 6, CEC-MS utilizing full scan positive ion mode of ESI was employed to study the effect of fragmentor voltage on the in-source collision induced dissociation (IS-CID) of several APEO nonionic surfactants. Finally, in Chapter 7, the preparation and characterization of a novel liquid crystalline stationary phase suitable for separation of neutral and charged compounds in packed column CEC is evaluated.
17

Part A: The Use of Nonionic Associative Polymers for the Thickening and Emulsifying of Personal Care Products/ Part B: The Synthesis of a Manganese Sod Mimetic for Reactive Coatings

McMahon, Mallory Lynn 01 June 2011 (has links) (PDF)
Part A The use of nonionic associative thickeners was proposed for personal care applications. Various limitations of current rheology modifiers used in personal care were discussed. Nonionic associative polymers were examined as both thickeners and emulsifiers. The structure/property relationship for nonionic polymers and their ability to thicken and emulsify were fully examined. Results showed an increase in thickening efficiency for nonionic associative polymers with higher log(P) (partition coefficient) values. This was due to the formation of smaller aggregates and increased bridging between aggregates. The connection between oil polarity, log(P) of the associative polymer, and emulsion stability showed no relationship however; as the log(P) value of the polymer decreased, emulsion stability increased. The effects of nonionic associative polymer molecular weight and thickening efficiency proved to be positive; as molecular weight increased, thickening efficiency increased. Specific interactions between nonionic associative thickeners and common ingredients in personal care products were also explored. The interaction between nonionic associative thickeners and surfactants proved to be dependent on surfactant type as well as hydrophobe shape and size on the associative thickener. There appeared to a clear effect of salt on the thickening and emulsifying capabilities of the nonionic associative polymers but the exact interaction was not yet determined. Part B Superoxide dismutation (SOD) chemistry pertaining to manganese enzymes was explored. A series of manganese SOD mimetic enzymes were synthesized and their SOD activity was examined. The McCord-Fridovich Assay showed mimetic enzymes containing secondary amine bonds and electron difficiency around bonding sites had higher SOD activity. Click chemistry was used for the synthesis of a 1,4-triazole containing tridentate ligand. The ideal reaction conditions chosen for the click reaction was a solvent blend of 1:1 dichloromethane and water with copper sulfate and sodium ascorbate as a catalyst. The tridentate ligand was grafted onto azido-functionalized polystyrene. Infrared spectroscopy was used to confirm the completion of the click reaction. The azide peak at 2100 cm-1 was removed after the click reaction was performed on the azido-functionalized polystyrene.
18

Functionalized Hyperbranched Polymers And Nonionenes

Roy, Raj Kumar 07 1900 (has links) (PDF)
In 1980’s a new class of material named as dendrimer became popular both in the field of polymer science and engineering. Dendrimer is an example of symmetric, highly branched three dimensional globular nano-object. It possess several interesting physical and chemical properties like low solution and melt-viscosity, lower intermolecular chain entanglement, large number of end groups placed at the molecular periphery, relatively high solubility with respect to their linear counterpart. In order to get this perfectly branched structure, one has to go through the tedious multistep synthetic approach, repetitive chromatographic purification and protection-deprotection strategies in every step; all of which limits the large scale production and thus commercialization. On the other hand, hyperbranched polymer, a highly branched analogue of dendritic polymer with few defects in their branching architecture, which can be prepared in a single step, show similar physical and chemical properties as that of dendrimer. Polymerization of AB2 monomer is one of the well established method to generate hyperbranched polymer which upon polymerization, generates plenty of ‘B ’groups at the periphery along with a single ‘A’ group as a focal point in the resulting hyperbranched polymer as shown in Figure 1. From the structural point of view, hyperbranched polymers consist of three distinctly different compartments such as periphery, interior and a (single) focal point. During the past decade our lab have developed a novel melt trans-etherification process to generate polyethers and have utilized to access to a wide variety of hyperbranched structures. One of the challenges we addressed is to selectively functionalize the periphery of the hyperbranched polymer during the polymerization process. Polycondensation of ‘AB2’ monomer is not sufficient enough to generate a wide variety of hyperbranched polymer as the periphery of hyperbranched polymer is limited to the ‘B’ functional group unless it could be modified via ‘post-polymerization modifications’. Copolymerization of ‘AB2’ monomer with stoichiometric amount of ‘A-R’ monomer should result in hyperbranched polymer decorated with ‘R’ groups in the periphery that can be prepared in a single step. One of the prerequisite in the ‘AB2+A-R’ approach is that the comonomer ‘A-R’ should have silent ‘R’ group which does not interfere during the polymerization. During the copolymerization process with stoichiometric amount of ‘A-R’ monomer, ‘AB2’ monomer having one equivalent excess of ‘B’ can react with the ‘A’ group from ‘A-R’ monomer eventually generating the hyperbranched structure with peripheral ‘R’ groups. By appropriately choosing the ‘R’ group, one can access a wide class of hyperbranched polymer with the required functionality. Further by having a reactive ‘R’ group that is not participating in polymerization can act as a handle for post-polymerization modifications. For instance, copolymerization of 1-(6-Hydroxyhexyloxy)-3,5-bis(methoxymethyl)-2,4,6-trimethylbenzene (Hydroxy as ‘A’ and methoxy as ‘B’) and 6-bromo-1-hexanol where ‘OH’ and ‘-(CH2)6Br’ is ‘A’ and ‘R’ functional groups respectively, generates hyperbranched polymer with peripheral alkyl bromide functional groups as shown in Figure 2. The peripheral alkylbromides has been quantitatively transformed to quaternary ammonium or pyridinium salts using trimethyl amine or pyridine respectively. Thus by the post polymerization modification, we have transformed a hydrophobic hyperbranched polymer to a water soluble cationic hyperbranched polymer by simple and efficient post-polymerization modification. In a slightly different objective we Another problem that I have addressed is the difficulty associated with the aforementioned copolymerization approach. In spite of the fact that stoichiometric amounts of ‘A-R’ type monomer was taken in ‘AB2 + A-R’ approach, the extent of peripheral functionalization i.e. the incorporation of ‘R’ group is relatively lower. Further the molecular weight of the hyperbranched polymer obtained is also not high. One of the reasons we adopted ‘AB2 + A-R’ approach is to provide a functional handle for the subsequent post-polymerization modification. We modified the ‘AB2’ type monomer with a functionalizable handle to circumvent the lower amount of incorporation of the ‘A-R’ type monomer in ‘AB2 + A-R’ approach. Of all the readily functionalizable handles, click chemistry found to be a very useful tool for the post-polymerization modifications as the reactions conditions are mild, no side product, high selectivity, easy purification, etc. Another advantage of this reaction is that, we can incorporate any type of functional group starting from a single clickable parent hyperbranched polymer. In this particular project, I have Earlier design of the ‘AB2’ type monomer in our group, to prepare hyperbranched polymer via melt transetherification process, involved benzylic methoxy groups as ‘B’ in ‘AB2’ monomer leading to a hyperbranched polymer with peripheral methoxy groups. Transetherification under melt-conditions is an equilibrium reaction which was driven towards the hyperbranched polymer by continuous removal of methanol from the system as a volatile alcohol. In the new design of ‘AB2’ monomer; we have used benzylic allyloxy groups as ‘B’ in ‘AB2’ monomer, where in polymerization is driven by the continuous removal of allyl alcohol (instead of methanol as in the previous case), generates hyperbranched polymer with peripheral allyloxy group containing hyperbranched polymer. The allyloxy groups can be subsequently functionalized with a variety of thiol, we prepared a hydrocarbon-soluble octadecyl-derivative, amphiphilic systems using 2-mercaptoethanol and chiral amino acid (N-benzoyl cystine) hyperbranched structures by using thiol-ene click reactions (Figure 3). Polymers prepared from the parent hyperbranched polymer have significantly different physical properties like glass transition temperature (Tg), melting point (Tm) etc; thus considering the versatility of functionalization, parent polymer could be envisioned as a clickable hyperscaffold. More interestingly by functionalizing cystine derivative, we have demonstrated the possibility of biconjugation of the hyperbranched polymer. In summary, the limitations of ‘AB2+A-R’ copolymerization approach (low molecular weight Molecular weight and molecular weight distribution are very important parameters that influence the physical property and thus the application of the polymeric materials. As predicted by Flory, hyperbranched polymers are inherently polydisperse in nature and it tends to infinity when the percent of conversion is very high. Experimentally observed value of polydispersity is also significantly higher compared to their linear analogues. Control of the molecular weight and polydispersity of hyperbranched polymer by using a suitable amount of reactive multifunctional core has been demonstrated in this project. We have substantiated by using very little amount of ‘B3’ core along with ‘AB2’ monomer; wherein ‘B’ in ‘B3’ are more reactive than ‘B’ in ‘AB2’ monomer, regulate the molecular weight and polydispersity of the resulting hyperbranched polymer. As the ratio of core to monomer increases the molecular weight and polydispersity reduces in nearly linear fashion. In a slightly different objective, the core and periphery are functionalized with two different fluorophore by using orthogonal click reactions and demonstrated the possibility of energy transfer from periphery to the core of the hyperbranched polymer. In this section of my thesis, the self-assembly behavior of a periodically grafted amphiphilic copolymer has been studied. Polymer was synthesized via melt transesterification approach where hexaethylene glycol monomethyl ether (HEG) containing diester monomers are reacted with alkylyne diol monomers with varying carbon spacer (C12 and Another interesting problem, I approached is to functionalize the interior part of the hyperbranched polymer. In the case of dendrimer, as it is a step-wise synthesis, internal functionalization could be accomplished with the order of monomer addition i.e. by putting the internal functional group containing monomer first followed by other monomer not having those functional groups, whereas it is a bit challenging task for hyperbranched polymers especially when dealing with polycondensation of AB2 monomers, as it is a single step polymerization process. For a hyperbranched polymer in the polycondensation of ‘AB2’ monomer, the internal functional group should reside in between of the ‘A’ and ‘B’ functional group wherein the internal functional groups are silent during the process of polymerization. In order to do so, we have designed and synthesized a new AB2 monomer (a in Figure: 4). Here decanol is the volatile condensate that was removed during the transetherification reactions leading to a hyperbranched polymer having allyl group as the internal functional group and decyloxy as the peripheral functional group (b in Figure: 4). As a post-polymerization modification, the interior allyl groups were modified by thiol-ene click reaction with variety of thiol derivatives. In one example, the inherent hydrophobic nature of the parent hyperbranched polymer which is enhanced by the decyl chain at the molecular periphery, is converted to a alkaline water soluble hyperbranched polymer by the click reaction with mercapto succinic acid (d in Figure: 4) or mercapto propionic acid (c in Figure: 4) to the internal allyl groups, generating a novel amphiphilic hypersystem. This kind of amphiphilic systems are very interesting to study for their self-assembly behavior, in this particular case, the modified hyperbranched polymer adopts as a large spherical aggregates in alkaline water evidenced by FESEM (Figure: 4) and AFM images. Further investigation is being carried out to understand the exact nature of these aggregates. As the hyperbranched polymer contained ‘-S-‘ group in the interior, we utilized this as the scaffold for scavenging heavy metal ions like Hg2+ from aqueous solutions to the chloroform solution containing polymer. This hyperbranched polymer could trap Hg2+ ions even when present in ppm level of contamination.
19

Développement de nanovecteurs multicompartimentaux à base de cyclodextrines amphiphiles et de lipides pour des applications en nanomédecine / Development of multicompartment nanocarriers based on amphiphilic cyclodextrins and lipids for application in nanomedicine

Zerkoune, Leïla 29 September 2015 (has links)
L’idée directrice de ce travail de thèse était d’introduire au sein de mésophases lipidiques des molécules de β-cyclodextrine (βCD) amphiphiles obtenue par bio-estérification afin d’obtenir des nano-assemblages plurimoléculaires et multi-compartimentés combinant trois fonctions essentielles pour le transport ou la vectorisation de molécules thérapeutiques : (i) la capacité d’incorporer une substance d’intérêt par formation de complexe d’inclusion avec la cyclodextrine ; (ii) être biocompatibles et aptes à passer facilement les barrières biologiques ; (iii) pouvoir co-incorporer une seconde substance d’intérêt, hydrophile ou hydrophobe, dont l’action biologique soit différente de celle assurée par la première substance. L’ensemble des travaux ont porté sur le dérivé βCD-C10 polysubstitué en face secondaire par des chaînes hydrocarbonées en C10 avec un degré moyen de substitution de 7,5. L’association de ce dérivé avec trois catégories de lipides a été envisagée : des tensioactifs micellaires non-ioniques (Brij 98, Polysorbate 80, n-dodécyl-β-D-maltoside), un lipide lyotrope non lamellaire formant des mésophases de type cubique bicontinue (monooléine), un phospholipide s’auto-organisant en bicouches propices à l’obtention de vésicules (dimyristoyl phosphatidylcholine). Selon une démarche principalement physico-chimique, différentes techniques ont été mises en œuvre pour caractériser les systèmes mixtes lipide/βCD-C10 aux échelles moléculaire et supramoléculaire : diffusion-diffraction des rayons X, calorimétrie différentielle, spectrophotométrie d’absorption UV-visible, spectroscopie de fluorescence, diffusion de la lumière statique (turbidimétrie) ou quasi-élastique, microscopie optique et microscopie électronique par cryo-transmission. L’ensemble des résultats démontrent que le dérivé βCD-C10 forme spontanément ou selon un protocole très simple, des assemblages plurimoléculaires mixtes avec les trois catégories de lipides, assemblages dont la topologie dépend de la structure chimique du lipide et du taux de cyclodextrine amphiphile incorporé (tubules, vésicules uni- ou oligolamellaires, cubosomes). Ces assemblages sont stables et capables d’incorporer une substance hôte hydrophobe, notamment les vésicules mixtes tensioactif non-ionique/ βCD-C10 et les cubosomes mixtes monooléine/P80/ βCD-C10. / The key idea of this Ph.D. thesis is to introduce amphiphilic β-cyclodextrin molecules (βCD), obtained by bio-transesterification, within lipid mesophases in order to obtain multi-compartment plurimolecular nano-assemblies, which combine three essential functions for transport or delivery of therapeutic molecules: (i) capacity to incorporate a substance of interest through formation of inclusion complexes with the modified cyclodextrin; (i) biocompatibility and ability to easily pass the biological barriers; and (iii) possibility for co-encapsulation of a second substance of interest, a hydrophilic or a hydrophobic one, whose biological action is different from that provided by the first substance. The performed Ph. D. work focused on the β-cyclodextrin derivative βCD-C10 with an average degree of substitution of 7.5 of the secondary face of the macrocycle by hydrocarbon chains C10. The association of this derivative with three classes of amphiphiles was studied: (i) nonionic micellar surfactants (Brij 98, Polysorbate 80, n-dodecyl β-D-maltoside), (ii) a lyotropic nonlamellar lipid forming bicontinuous cubic mesophases (monoolein), and (iii) a phospholipid (dimyristoyl phosphatidylcholine), which self-ssembles into bilayer membranes permitting the production of vesicles.The employed physical-chemical approach involved different techniques for characterization of the mixed βCD-C10/lipid systems at molecular and supramolecular levels: cryo-transmission electron microscopy, X-ray diffraction, differential scanning calorimetry, UV-visible absorption spectroscopy, fluorescence spectroscopy, turbidimetry, and quasi-elastic light scattering.The obtained results indicated that the βCD-C10 derivative forms spontaneously (or via a very simple preparation protocol) plurimolecular mixed nano-assemblies with the three types of lipids. The topologies of the resulting nano-assemblies essentially depend on the chemical structures of the lipids and the degree of incorporation of the amphiphilic cyclodextrin (tubules, unilamellar or oligolamellar vesicles, and cubosomes). These assemblies, namely the mixed vesicles of nonionic surfactant/βCD-C10 and the cubosomes of mixed monoolein/P80/βCD-C10 compositions, are stable and capable of incorporation of hydrophobic guest substances.
20

Adsorption of polyhydroxyl based surfactants

Matsson, Maria January 2005 (has links)
Adsorption on solid surfaces from solution is a fundamental property of a surfactant. It might even be the most important aspect of surfactant behavior, since it influences many applications, such as cleaning, detergency, dispersion, separation, flotation, and lubrication. Consequently, fundamental investigations of surfactant adsorption are relevant to many areas. The main aim of this thesis has been to elucidate the adsorption properties, primarily on the solid/water interface, of a particular class of polyhydroxyl based surfactants: the alkyl glucosides. By the use of ellipsometry, the equilibrium and kinetic aspects of adsorption on titanium dioxide with respect to structural effects has been studied. Furthermore, the effects of small amounts of cationic surfactant additives on the adsorption on silica have been investigated. The results have been compared with similar studies for other nonionic surfactants. We have found that the surfactant structure has a strong effect on the adsorption properties. An increase in the surfactant chain length increases the cooperativity of the system. An increase in the head group polymerization decreases the cooperativity and the plateau adsorbed amount at equilibrium. The effect of surfactant structure on the adsorption kinetics depends on the concentration relative to the cmc, while the there is a decrease in the rate of desorption with increasing hydrophobic chain length independent of the concentration. The adsorption/desorption process is concluded to be diffusion driven, as suggested by the model used. When comparing these results with studies on ethylene oxide based surfactants, we conclude that the two types of surfactants exhibit similar trends on surfaces onto which they adsorb. Adsorption from binary surfactant solutions is even more interesting than adsorption from single surfactant solutions, since it brings us one step closer to the systems used in applications. In addition, adsorption from a mixture can be very different from adsorption from any of the single surfactants in the mixture. Alkyl glucosides alone do not adsorb on silica, but addition of small amounts of a cationic surfactant to the alkyl glucoside solution allows for adsorption on silica. A comparison between the adsorption and bulk properties has shown that mixed micellization explains most, but not all, effects of the coadsorption properties. Changing the pH in the mixed systems reveals that a surfactant with a pH-dependent charge and the ability to adapt its charge to the environment, e.g. a surface, enhances the adsorbed amount over a wider range of pH values than a purely cationic surfactant. It is well known that alkyl glucosides and ethylene oxides adsorb differently on different types of hydrophilic surfaces. As a consequence, replacing ethylene oxides with alkyl glucosides might not be all straight-forward; however, we have shown that the effect of the surface can be eliminated by the use of a cosurfactant. / <p>QC 20101018</p>

Page generated in 0.0792 seconds