• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 13
  • 12
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 21
  • 19
  • 18
  • 16
  • 16
  • 14
  • 12
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Estudos das características fotofísicas da porfirina mesotetrasulfonatofenil (TPPS4): efeitos da protonação e interação com micelas de CTAB / Study of photophysical characteristics of meso-tetrakis sulphonatophenyl porphyrin (TPPS4): effects of protonation and interaction with CTAB micelles.

Gonçalves, Pablo José 27 April 2006 (has links)
Neste trabalho, estudamos as características fotofísicas da porfirina mesotetrasulfonatofenil (TPPS4) em sua forma protonada e não protonada. Foi obtido o conjunto completo dos parâmetros fotofísicos de estados excitados da TPPS4 em solução aquosa e na presença de micelas do surfactante catiônico brometo de cetiltrimetilamônio (CTAB). Os parâmetros obtidos foram: seções de choque do estado fundamental e dos excitados singleto e tripleto, tempos de vida dos estados excitados singleto e tripleto, taxas de decaimento radiativo, da conversão interna e do cruzamento intersistemas e rendimentos quânticos da fluorescência e do estado tripleto. Foram empregadas as técnicas ópticas lineares espectroscópicas de absorção UV/Vis, de fluorescência estática e resolvida no tempo, flash-fotólise e uma técnica óptica não linear Varredura-Z. Comparando os dados obtidos com os da literatura confirmamos que a técnica Varredura-Z em todos os regimes utilizados é confiável e útil para estudo das características dos estados excitados. Foi observado que a protonação afeta todos os parâmetros obtidos: aumenta todas as taxas da decaimento da energia de excitação, diminuindo assim os tempos de vida dos estados excitados, aumenta o rendimento quântico da fluorescência e diminui o do estado tripleto. Através de dois regimes da Varredura-Z: amplificação paramétrica (OPA) e de pulsos ultracurtos de luz branca (LB), foi obtido o espectro de absorção do estado singleto excitado na região de 460 a 800 nm. Foi observado que a forma da TPPS4 protonada possui uma alta absorção do estado singleto excitado na região de 460 a 620 nm. Analisando os resultados obtidos podemos concluir que a TPPS4 é um composto promissor para aplicação como limitador óptico na região espectral visível e como uma chave óptica, sendo que na forma não protonada ela será eficiente na escala de femto- a picossegundos, enquanto que na forma protonada na escala de femto- a nanossegundos. Na presença de micelas de CTAB os parâmetros obtidos estão próximos dos valores encontrados para porfirina não protonada e completamente diferente daqueles da forma protonada. Além disso, na aplicação da Varredura-Z em regime LB foi observado um efeito acumulativo, devido à dispersão temporal da luz branca (chirp). Este efeito é mais pronunciado para forma protonada, devido sua banda Q de absorção coincidir com a região de maior potência da luz branca. / In this work, we study photophysical characteristics of meso-tetrakis sulphonatophenyl porphyrin (TPPS4) in protonated and nonprotonated states. We obtained the whole set of photophysical parameters of TPPS4 excited states in homogeneous aqueous solution and in the presence of micelles from cationic detergent cetyltrimethylammonium bromide (CTAB). The parameters obtained were: ground and excited singlet and triplet states cross sections; intersystemcrossing, internal conversion and radiative rate constants; singlet and triplet states life times and fluorescence and triplet state quantum yields. The techniques employed were linear optical ones: UV/Vis absorption and fluorescence spectroscopies, time-resolved fluorescence, flash-photolysis, and nonlinear Z-scan. We have confirmed, comparing obtained date with those from literature, that Z-scan in all its applied regimes is reliable and useful to study the excited state characteristics. It was observed that protonation affects all TPPS4 photophysical parameters: increases all rate constants of the excited energy dissipation thus reducing the excited state lifetimes, increases the fluorescence quantum yield and reduces the triplet state quantum yield. The singlet excited state absorption spectrum was obtained in the 460-800 nm region, with two Z-scan regimes: optical parametric amplification - OPA with 120-140 fs pulses and white light ultrashort pulses. It was observed that the protonated TPPS4 form possesses intense absorption of its singlet excited state in the 460-620 nm region. Basing on the obtained date analysis we can conclude that TPPS4 is promising for application as optical limiters in the visible spectral range and optical switching: in its nonprotonated form it can be effective in the range from femto- up to picoseconds while in its protonated form in the range from femto- up to nanoseconds. In the presence of CTAB micelles the TPPS4 parameters were close to those found for its nonprotonated state and completely different from the values for the protonated one. Besides, we observed an accumulative effect due to white light time dispersion (chirp), which was more pronounced for the protonated state, since its Q absorption band coincided with white light high potency region.
42

Estudos das características fotofísicas da porfirina mesotetrasulfonatofenil (TPPS4): efeitos da protonação e interação com micelas de CTAB / Study of photophysical characteristics of meso-tetrakis sulphonatophenyl porphyrin (TPPS4): effects of protonation and interaction with CTAB micelles.

Pablo José Gonçalves 27 April 2006 (has links)
Neste trabalho, estudamos as características fotofísicas da porfirina mesotetrasulfonatofenil (TPPS4) em sua forma protonada e não protonada. Foi obtido o conjunto completo dos parâmetros fotofísicos de estados excitados da TPPS4 em solução aquosa e na presença de micelas do surfactante catiônico brometo de cetiltrimetilamônio (CTAB). Os parâmetros obtidos foram: seções de choque do estado fundamental e dos excitados singleto e tripleto, tempos de vida dos estados excitados singleto e tripleto, taxas de decaimento radiativo, da conversão interna e do cruzamento intersistemas e rendimentos quânticos da fluorescência e do estado tripleto. Foram empregadas as técnicas ópticas lineares espectroscópicas de absorção UV/Vis, de fluorescência estática e resolvida no tempo, flash-fotólise e uma técnica óptica não linear Varredura-Z. Comparando os dados obtidos com os da literatura confirmamos que a técnica Varredura-Z em todos os regimes utilizados é confiável e útil para estudo das características dos estados excitados. Foi observado que a protonação afeta todos os parâmetros obtidos: aumenta todas as taxas da decaimento da energia de excitação, diminuindo assim os tempos de vida dos estados excitados, aumenta o rendimento quântico da fluorescência e diminui o do estado tripleto. Através de dois regimes da Varredura-Z: amplificação paramétrica (OPA) e de pulsos ultracurtos de luz branca (LB), foi obtido o espectro de absorção do estado singleto excitado na região de 460 a 800 nm. Foi observado que a forma da TPPS4 protonada possui uma alta absorção do estado singleto excitado na região de 460 a 620 nm. Analisando os resultados obtidos podemos concluir que a TPPS4 é um composto promissor para aplicação como limitador óptico na região espectral visível e como uma chave óptica, sendo que na forma não protonada ela será eficiente na escala de femto- a picossegundos, enquanto que na forma protonada na escala de femto- a nanossegundos. Na presença de micelas de CTAB os parâmetros obtidos estão próximos dos valores encontrados para porfirina não protonada e completamente diferente daqueles da forma protonada. Além disso, na aplicação da Varredura-Z em regime LB foi observado um efeito acumulativo, devido à dispersão temporal da luz branca (chirp). Este efeito é mais pronunciado para forma protonada, devido sua banda Q de absorção coincidir com a região de maior potência da luz branca. / In this work, we study photophysical characteristics of meso-tetrakis sulphonatophenyl porphyrin (TPPS4) in protonated and nonprotonated states. We obtained the whole set of photophysical parameters of TPPS4 excited states in homogeneous aqueous solution and in the presence of micelles from cationic detergent cetyltrimethylammonium bromide (CTAB). The parameters obtained were: ground and excited singlet and triplet states cross sections; intersystemcrossing, internal conversion and radiative rate constants; singlet and triplet states life times and fluorescence and triplet state quantum yields. The techniques employed were linear optical ones: UV/Vis absorption and fluorescence spectroscopies, time-resolved fluorescence, flash-photolysis, and nonlinear Z-scan. We have confirmed, comparing obtained date with those from literature, that Z-scan in all its applied regimes is reliable and useful to study the excited state characteristics. It was observed that protonation affects all TPPS4 photophysical parameters: increases all rate constants of the excited energy dissipation thus reducing the excited state lifetimes, increases the fluorescence quantum yield and reduces the triplet state quantum yield. The singlet excited state absorption spectrum was obtained in the 460-800 nm region, with two Z-scan regimes: optical parametric amplification - OPA with 120-140 fs pulses and white light ultrashort pulses. It was observed that the protonated TPPS4 form possesses intense absorption of its singlet excited state in the 460-620 nm region. Basing on the obtained date analysis we can conclude that TPPS4 is promising for application as optical limiters in the visible spectral range and optical switching: in its nonprotonated form it can be effective in the range from femto- up to picoseconds while in its protonated form in the range from femto- up to nanoseconds. In the presence of CTAB micelles the TPPS4 parameters were close to those found for its nonprotonated state and completely different from the values for the protonated one. Besides, we observed an accumulative effect due to white light time dispersion (chirp), which was more pronounced for the protonated state, since its Q absorption band coincided with white light high potency region.
43

Novel Polarimetry Techniques

Kothari, Neeraj 13 August 2007 (has links)
Polarization specific measurements are advancing the capabilities of scientific instruments looking for ever smaller effects and material parameters. For example, the magneto-optical nonlinear Faraday effect can be used to characterize various electric and magnetic polarizability parameters of an individual molecule. Another major application is detection of desired particles in a highly scattering environment, the physical effect of which has been extensively researched, and is being overcome by using time-gated and polarization techniques. The polarimeter sensitivity is limited by the extinction-ratio obtained from polarizers. Of available polarizer materials, naturally occurring Calcite crystals provide the best extinction ratios because of their good optical homogeneity and high birefringence. However, there is a need for polarization determination with higher sensitivities, and thus a necessity to find better polarizing materials and methods. I developed a next-generation polarimeter in an attempt to sensitively detect the second-order Faraday effect, along with a substance s chirality and Verdet constant. Also, I developed a device uniquely able to sensitively detect chiral signatures in the presence of massive depolarizing scattering. In addition, I begun developing a novel type of polarimeter based on the highly-polarization-sensitive nonlinear-optical process of harmonic generation, whose required crystals can be grown with extremely high quality.
44

The Study of the Characteristics and the Applications of Nonlinear Optical Waveguide Structures

Chu, Chin-Hsuan 12 July 2000 (has links)
none
45

The Analysis and Simulation of the Structure of the Nonlinear Optical Waveguide

Tasy, Huey- Jiuan 28 June 2001 (has links)
In this paper¡Awe use both beam propagation method and BPM_CAD to analysis the characteristics of nonlinear optical waveguide structures. The refractive index of optical waveguide medium changes with field intensity called nonlinear optical waveguide. We use Mode Theory to solve three layers optical waveguide. There are nonlinear cladding, substrate layers and linear film. Not only find the disperson relation curve, but also observe the affections of the input power to field distribution. With the help of this, we propose a general math method to analysis symmetric muti-layer optical waveguide with periodic index that both cladding and substrate are nonlinear. According to the nonlinear dispersion relation we consider both the affections of the input power to refractive index in the film and space soliton at nonlinear interface. We propose a optical coupler and feed-back optical switch. And also, we analysis 2¡Ñ3 branches optical waveguides by changing their media to nonlinear media. According to the result, we find that they have both logic function and optical switch.
46

The Analysis, Simulations, and Applications of the Structure of the Nonlinear Waveguide

Lin, Jyh-Shiuan 10 July 2002 (has links)
In this paper, we used the beam propagation method to analyze the characteristics of nonlinear optical waveguides. Refractive indexes of media in planar optical waveguides are changed with the electric field intensity called nonlinear planar optical waveguides. We use the modal theory to solve the three-layer planar optical waveguide with the guiding film is nonlinear. We not only obtained dispersion relation curves, but also observed the affections of the input power to field distributions. By the basic theory of this, we proposed a novel method to analyze multi-layer planar optical waveguides with nonlinear or localized nonlinear guiding films.By the theory and novel method we pointed out, on the other hand, we proposed an all-optical switch and analyze the all-optical device by the beam propagation method.
47

Initial and plasmon-enhanced optical properties of nanostructured silicon carbide

Zakharko, Yuriy 30 October 2012 (has links) (PDF)
Nanostructured silicon carbide (SiC) is considered today as a good alternative to the conventional materials for various multidisciplinary applications. In this thesis, SiC nanostructures were elaborated by means of electrochemical etching and laser ablation techniques. The first part of the thesis clarifies size-dependence of optical properties as well as importance of local-field effects onto the photoinduced electronic transitions of SiC nanostructures. In the second part of the thesis strong 15-fold photoluminescence enhancement of SiC nanoparticles is ensured by their near-field interactions with multipolar localized plasmons. Further, 287-fold and 72-fold plasmon-induced enhancement factors of two-photon excited luminescence and second harmonic generation is achieved, respectively. The main physical mechanisms responsible for the observed effects were described by three-dimensional finite-difference time domain simulations. Finally, the coupling effect of luminescent SiC nanoparticles to plasmonic nanostructures is used in the enhanced labelling of biological cells on the planar structures. As a perspective, colloidal plasmonic (Au@SiO2)SiC nanohybrids were elaborated and characterized.
48

Nonlinear Microscopy for Histology

Tuer, Adam 13 August 2013 (has links)
Histology has long recognized the intimate link between structure and function. Over centuries histologists have utilized an assortment of optical microscopy techniques to elucidate functional attributes of tissues through investigating tissue architecture. This thesis includes developments in the field of nonlinear optical microscopy for use in histology and pathology. The main contributions focused on the study of fibrillar collagen in the extracellular matrix (ECM) with polarization-dependent second harmonic generation (P-SHG) microscopy and the study of harmonophore-stained cellular nuclei with third harmonic generation (THG) microscopy. The P-SHG microscopy technique, “polarization-in, polarization-out” (PIPO), was developed to accurately determine the second-order polarization properties of thin tissue sections. The polarization instrumentation was implemented into a nonlinear optical microscope and a custom fitting algorithm extracted ratios of the second-order nonlinear susceptibility elements at every pixel of an obtained image. Hierarchical organization, at every level of structure, can contribute significantly to the macroscopic second-order polarization properties of fibrillar collagen in the ECM and quantifiable differences between the various tissue architectures were observed. A framework was developed, based on the collagen hierarchical organization, to interpret the submicron polarization properties of various tissues. Complimentary to the P-SHG study of connective tissue, the structure of hematoxylin and eosin (H&E) stained nuclei was revealed by THG microscopy. Imaging the 3D organization of nuclei was possible using the inherent optical sectioning provided by nonlinear microscopy. The origin of THG was investigated with spectrally- and temporally-resolved measurements, as well as the THG ratio method. A rather complex situation involving multiple dye complexes was revealed. The structure of dye aggregates was investigated with THG PIPO microscopy. The techniques of PIPO and harmonophore-stained harmonic generation microscopy show great potential for ultimately furthering understanding of tissue structure and function. H&E stained tissue investigations with THG microscopy has applications as a tool for cancer diagnostics. PIPO can elucidate the symmetry and organization of materials beyond tissues, including starch, nanowires, and protein crystals. In pathology, the developed collagen framework has strong implications, as collagen is recognized as playing a more active role in a number of diseases including idiopathic pulmonary fibrosis, wound repair, and tumour development and progression.
49

Nonlinear Microscopy for Histology

Tuer, Adam 13 August 2013 (has links)
Histology has long recognized the intimate link between structure and function. Over centuries histologists have utilized an assortment of optical microscopy techniques to elucidate functional attributes of tissues through investigating tissue architecture. This thesis includes developments in the field of nonlinear optical microscopy for use in histology and pathology. The main contributions focused on the study of fibrillar collagen in the extracellular matrix (ECM) with polarization-dependent second harmonic generation (P-SHG) microscopy and the study of harmonophore-stained cellular nuclei with third harmonic generation (THG) microscopy. The P-SHG microscopy technique, “polarization-in, polarization-out” (PIPO), was developed to accurately determine the second-order polarization properties of thin tissue sections. The polarization instrumentation was implemented into a nonlinear optical microscope and a custom fitting algorithm extracted ratios of the second-order nonlinear susceptibility elements at every pixel of an obtained image. Hierarchical organization, at every level of structure, can contribute significantly to the macroscopic second-order polarization properties of fibrillar collagen in the ECM and quantifiable differences between the various tissue architectures were observed. A framework was developed, based on the collagen hierarchical organization, to interpret the submicron polarization properties of various tissues. Complimentary to the P-SHG study of connective tissue, the structure of hematoxylin and eosin (H&E) stained nuclei was revealed by THG microscopy. Imaging the 3D organization of nuclei was possible using the inherent optical sectioning provided by nonlinear microscopy. The origin of THG was investigated with spectrally- and temporally-resolved measurements, as well as the THG ratio method. A rather complex situation involving multiple dye complexes was revealed. The structure of dye aggregates was investigated with THG PIPO microscopy. The techniques of PIPO and harmonophore-stained harmonic generation microscopy show great potential for ultimately furthering understanding of tissue structure and function. H&E stained tissue investigations with THG microscopy has applications as a tool for cancer diagnostics. PIPO can elucidate the symmetry and organization of materials beyond tissues, including starch, nanowires, and protein crystals. In pathology, the developed collagen framework has strong implications, as collagen is recognized as playing a more active role in a number of diseases including idiopathic pulmonary fibrosis, wound repair, and tumour development and progression.
50

Propagação de campos eletromagnéticos em meios materiais finitos

Lencina, Alberto 24 August 2006 (has links)
Made available in DSpace on 2015-05-14T12:14:17Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3305943 bytes, checksum: 4db7e993b605a6945a324ace5ef053e4 (MD5) Previous issue date: 2006-08-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, the electromagnetism in material media is considered. It starts from the Macroscopic Maxwell Equations assuming that the fields have a temporal dependence that can be expressed by a Fourier transform. The conservation of the energy, linear momentum and angular momentum are studied from a general point of view. By taking the temporal average of the angular momentum, the orbital and spin contributions were derived without appealing to gauge fields. Following, the central issue is considered: the electromagnetic field propagation in bounded media. It is demonstrated the equivalence in the field propagation from both, ondulatory and energetic, points of view. A plane-parallel-faces medium geometry was considered and the field propagation from the energetic point of view is here established. The resulting set of equations allows to deal with the electromagnetic field propagation in general bounded media. Thus, this equation set, that we called S Formalism, is viewed as a method to solve this kind of problems. This approach emphasizes the possible nonequivalence between the squared field amplitude and the temporal-averaged Poynting vector modulus. This fact motivated the study of such nonequivalence and leaves open the possibility to introduce a new kind of medium, so-called Poynting medium. Since the S-Formalism allows to study media whose response is a function of the temporal-averaged Poynting vector, the light-induced charge carrier media and finally, saturable media are considered / Nesta tese é abordado o eletromagnetismo nos meios materiais. Parte-se das Equações de Maxwell Macroscópicas e supõe-se que os campos possuem uma dependência temporal que pode ser expressa em termos de uma transformada de Fourier. A conservação da energia, do momento linear e do momento angular são estudados nos meios materiais em geral. Calculando a média temporal do momento angular, as contribuições orbital e de spin são expressas sem a necessidade de apelar aos campos de gauge. Seguidamente é considerado o assunto central da pesquisa: a propagação de campos eletromagnéticos em meios materiais finitos. Demonstra-se a equivalência entre estudar a propagação dos campos desde o ponto de vista ondulatório ou desde o ponto de vista energético. A geometria considerada é a de meios com faces planas e paralelas e nela a propagação dos campos desde o ponto de vista energético é estabelecida. O conjunto de equações resultante serve para tratar a propagação de campos eletromagnéticos em meios finitos em geral. Portanto, este conjunto de equações, nomeado de Formalismo S, é visto como um método de resolução deste tipo de problemas. O Formalismo S deixa entrever uma possível não equivalência entre o módulo ao quadrado do campo e a média temporal do vetor de Poynting fato que motiva o estudo dessa não equivalência e a introdução de um novo tipo de meio chamado meio Poynting. Dado que o Formalismo S permite estudar meios cuja resposta é função da média temporal do vetor de Poynting, são considerados os meios com portadores de carga foto-induzidos. Finalmente, os meios não lineares saturáveis são analisados

Page generated in 0.1604 seconds