• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 13
  • 12
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 21
  • 19
  • 18
  • 16
  • 16
  • 14
  • 12
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Investigations Into The Structural, Dielectric And Optical Properties Of Glasses Containing Electro-Optic Components And Single Crystals Of Molecular Electro-Optic Materials

Shankar, M V 10 1900 (has links) (PDF)
No description available.
72

Fabricação de microrressonadores ópticos com alto fator de qualidade utilizando nitreto de silício depositado à temperatura ambiente para aplicações em óptica não linear / Fabrication of optical microring resonators with high Q-factor for nonlinear optics applications using silicon nitride film deposited at room temperature

Nascimento Júnior, Adriano Ricardo, 1991- 27 August 2018 (has links)
Orientadores: Leandro Tiago Manera, Arismar Cerqueira Sodré Júnior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-27T14:09:44Z (GMT). No. of bitstreams: 1 NascimentoJunior_AdrianoRicardo_M.pdf: 49523846 bytes, checksum: 938b4d8587e112835bf6e0988731ba04 (MD5) Previous issue date: 2015 / Resumo: Neste trabalho foram fabricados microrressonadores em anel com alto fator de qualidade utilizando filmes de nitreto de silício (SixNy) depositados a baixa temperatura (20 °C) utilizando a técnica de deposição ECR-CVD (Deposição em Fase Vapor por Resonância Ciclotrônica do Elétron). Graças à alta não linearidade do SixNy, tais filmes têm sido recentemente usados para aplicações em óptica não linear como a geração de pentes de frequência na banda C de telecomunicações. Para tais aplicações, o guia de onda do dispositivo deve possuir um ponto de dispersão nula no centro da banda C, necessitando de uma grande área. Infelizmente, filmes espessos de nitreto de silício (>400 nm) possuem um alto stress responsável pela ocorrência de rachaduras catastróficas no filme que reduzem drasticamente a eficiência do dispositivo. Utilizando simulações numéricas, demonstrou-se que para valores de índice de refração (n) maiores que 2, a área do guia de onda com zero dispersão em ? = 1,55 ?m é consideravelmente reduzida, necessitando assim de uma menor espessura de filme. Foi obtido um filme de SixNy rico em Si, com índice de refração igual a 2, alta taxa de deposição, baixa concentração de hidrogênio e uma rugosidade média de somente 0,52 nm (4,2 nm de desvio padrão). Devido à baixa temperatura da técnica de deposição empregada, não foi observado traços de stress no filme, permitindo a obtenção de uma espessura de 730 nm utilizando uma única etapa de deposição. Os microrressonadores ópticos fabricados com raios de 60 e 120 ?m apresentaram um FSR (Free Spectral Range) equidistante em toda a banda C e um fator de qualidade de 7,2x10^3 foi obtido experimentalmente. Tais resultados demonstraram a alta eficiência dos dispositivos fabricados com o filme de SixNy desenvolvido e sua promissora aplicação para óptica não linear na banda C de telecomunicações / Abstract: Silicon nitride (SixNy) films deposited by low-pressure electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-CVD) at room temperature are proposed for fabrication of microring resonators with high Q-factor. Due to the high silicon nitride nonlinearity, these films recently have also been used for nonlinear optics applications in the telecommunications C-band. For nonlinear applications such as the generation of frequency combs, the waveguide needs a zero dispersion point in the middle of C-band, requesting large waveguide area. Unfortunately, these thick SixNy films (>400 nm) have high stress and suffer from catastrophic cracking, which reduces the device efficiency. Using numerical simulations it was demonstrated that for refractive index (n) values greater than 2, the area of the waveguide with zero dispersion point at ? = 1.55 ?m is greatly reduced. A Si-rich silicon nitride layer with refractive index of 2, high deposition rate, low hydrogen concentration and roughness average of 0.52 nm with standard deviation of 4.2 nm was obtained. Due to the low temperature deposition, no thermal stress was observed in the SixNy film, allowing a thickness of 730 nm obtained with only one deposition step. After experimental measurements, microring resonators having a radius of 60 and 120 ?m, presented an equidistant Free Spectral Range and a Q-factor of 7.2x10^3 was achieved, showing the high efficiency of the device and their promising application in nonlinear effects in the telecommunication C-band / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
73

Événements extrêmes dans des cavités optiques non linéaires étendues / Extreme events in extended nonlinear optical cavities

Rimoldi, Cristina 08 December 2017 (has links)
Les événements extrêmes sont des phénomènes, souvent considérés catastrophiques, qui se produisent dans la queue d'une distribution généralement en s'écartant d'une décroissance attendue exponentielle. En optique, ces événements ont été étudié dans le contexte des fibres, où ils ont été amplement analysés, comme des vagues scélérates, par analogie bien connue entre l'optique et l'hydrodynamique à travers l'équation de Schroedinger non linéaire. Avec le développement et l'élargissement du domaine, l'étude des événements extrêmes a été étendue à des systèmes dissipatifs avec ou sans degrés spatiaux de liberté.Dans cette thèse on se concentre sur l'étude des événements extrêmes dans trois différents types de systèmes optiques actifs et dissipatifs, présentant chacun un ou deux degrés spatiales de liberté, soit dans le plan transversal (perpendiculaire à la direction de propagation de la lumière) soit dans la direction de propagation. Des structures localisées de nature différente constituent une solution possible importante dans chacun des systèmes étudiés ; leurs interactions autant que leurs rôles dans la formation des événements extrêmes ont donc été analysés en détails. Dans le premier système, un laser à semiconducteur monolithique (VCSEL) à large surface avec un absorbant saturable, on présente la formation d'événements extrêmes dans le plan transversal à deux dimensions de l'intensité du champ électrique. En particulier, on met en évidence la liaison entre ces objets et les solitons de cavité, soit stationnaires soit oscillatoires, aussi présents dans le système. Dans le deuxième système, un laser multimodal spatialement étendu dans la direction de propagation avec injection optique, on analyse l'interaction et la fusion des solitons de phase, des structures localisées qui se propagent dans la cavité en transportant une rotation de phase de 2π. Les événements extrêmes ont été étudié dans deux configurations : une première où ils émergent de la collision des solitons de phase avec des autres structures transitoires transportant une charge chirale négative, et une deuxième où des événements d'intensité élevée émergent d'un régime instable de motif en rouleau où les solitons de cavité ne sont pas des solutions stables. Dans les deux systèmes, on examine le rôle de la chiralité dans la formation des événements extrêmes. Dans le troisième système, un laser à semi-conducteur avec injection optique, on étudie dans les détails l'interaction des solitons de cavité dans le plan transversal, décrits comme deux particules soumises à un potentiel d'interaction décroissant exponentiellement avec la distance entre les deux objets : une analogie possible avec les matériaux hydrophobes a été proposée. Des résultats préliminaires présentant des événements extrêmes spatiotemporels dans ce système sont aussi donnés. / Extreme events are phenomena, often considered as catastrophic, that occur in the tail of a distribution usually deviating from an expected, exponential decay. In optics, these events were first studied in the context of fibers, where they have been extensively analyzed, as optical rogue waves, in light of the well known analogy between optics and hydrodynamics, through the nonlinear Schroedinger equation. With the development and the broadening of the field, extreme events have been also studied in dissipative optical systems with or without spatial degrees of freedom. In this Thesis we focused on the study of extreme events in three different active and dissipative optical systems, each presenting one or two spatial degrees of freedom, either in the transverse plane, perpendicular to the direction of propagation of light, or in the propagation direction. Localized structures of different nature represent an important possible solution in each one of the systems here studied, hence their interaction and the role played in the formation of extreme events have been also investigated into details. In the first system, a monolithic broad-area semiconductor laser (VCSEL) with an intracavity saturable absorber, we report on the occurrence of extreme events in the 2D transverse plane of the electric field intensity. In particular we highlight the connection between these objects and cavity solitons, both stationary and oscillatory, also present in the system. In the second system, a highly multimode laser with optical injection spatially extended along the propagation direction, we analyze the interaction and merging of phase solitons, localized structures propagating along the cavity carrying a 2π phase rotation. Extreme events have been investigated in two configurations: a first one where they emerge from the collision of phase solitons with other transient structures carrying a negative chiral charge, and a second one where high-peak events emerge from an unstable roll regime where phase solitons are not a stable solution. In both these systems we investigate the role of chirality in the extreme event formation. In the third system, a broad-area semiconductor laser (VCSEL) with optical injection, we study into details the interaction of cavity solitons in the transverse plane, described as two particles subjected to an interaction potential exponentially decreasing with the distance between the two objects: a possible analogy with hydrophobic materials is here suggested. Some preliminary results showing spatiotemporal extreme events in this system are also given.
74

Dynamic Chemical Imaging And Analysis Within Biologically Active Materials

Alex M Sherman (10711971) 06 May 2021 (has links)
A thorough understanding of pharmaceutical and therapeutic products and materials is important for an improved quality of life. By probing the complex behaviors and properties of these systems, new insights can allow for a better understanding of current treatments, improved design and synthesis of new drug products, and the development of new treatments for various health conditions. Often, the impact of these new insights are limited by current technology and instrumentation and by the methods in which existing data is processed. Additionally, current standards for characterization of pharmaceuticals and therapeutics are time-consuming and can delay the timeline in which these products become available to the consumer. By addressing the limitations in current instrumentation and data science methods, faster and improved characterization is possible.<div><br></div><div>Development and improvement in optical instrumentation provides potential solutions to the current limitations of characterization methods by conventional instrumentation. Limitations in speed can be addressed through the use of nonlinear optical (NLO) methods, such as second harmonic generation (SHG) and two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy, or by linear methods such as fluorescence recovery after photobleaching (FRAP). For these methods, a high signal-to-noise ratio (SNR) and a nondestructive nature decrease the overall sample size requirements and collections times of these methods. Furthermore, by combination of these optical techniques with other techniques, such as thermal analysis (e.g. differential scanning calorimetry (DSC)), polarization modulation, or patterned illumination, the collection of more complex and higher quality data is possible while retaining the improved speed of these methods. Thus, this modified instrumentation can allow for improved characterization of properties such as stability, structure, and mobility of pharmaceutical and therapeutic products.<br></div><div><br></div><div>With an increase in data quantity and complexity, improvements to existing methods of analysis, as well as development of new data science methods, is essential. Machine learning (ML) architectures and empirically validated models for the analysis of existing data can provide improved quantification. Using the aforementioned optical instrumentation, auto-calibration of data acquired by SHG microscopy is one such method in which quantification of sample crystallinity is enabled by these ML and empirical models. Additionally, ML approaches utilizing generative adversarial networks (GANs) are able to improve on identification of data tampering in order to retain data security. By use of GANs to tamper with experimentally collected and/or simulated data used in existing spectral classifiers, knowledge of adversarial methods and weakness in spectral classification can be ascertained. Likewise, perturbations in physical illumination can be used to ascertain information on classification of real objects by use of GANs. Use of this knowledge can then be used to prevent further data tampering or by improving identification of data tampering.<br></div>
75

Apport de l'optique non linéaire à l'imagerie infrarouge pour la détection de cibles à longue distance / Upconversion detection for long range active imaging in the infrared

Demur, Romain 28 September 2018 (has links)
Les applications de détection infrarouge active sont nombreuses dans le domaine de la défense et la sécurité. Cependant ces systèmes sont actuellement peu utilisés en pratique à cause de leur portée limitée. Un moyen d’augmenter cette portée est d’améliorer la sensibilité des détecteurs infrarouges qui possèdent des bruits bien plus élevés que leurs équivalents dans le visible. L’idée principale de cette thèse est d’utiliser l’optique non linéaire pour effectuer une conversion de fréquence du signal infrarouge à détecter vers de plus basses longueurs d’ondes et ainsi bénéficier des performances des détecteurs fonctionnants à ces longueurs d’ondes. Les développements récents en cristaux donnent un intérêt nouveau à ces techniques pour certains cas applicatifs identifiés au cours de cette thèse. L’étude détaillée de la conversion multimode à la fois temporelle et spatiale, a permis de proposer une méthode simple et originale pour dépasser l’état de l’art en terme de nombre d’éléments résolus convertis. Pour quantifier précisément les avantages de ces conversions, une étude théorique et numérique de la conversion multimode a été menée et deux séries d’expériences ont été conduites. La première concerne la détection ponctuelle de signaux moyen-infrarouge pour des applications de spectroscopie par conversion dans un cristal d’OP-GaAs. La deuxième concerne la détection de cibles par imagerie active dans le proche infrarouge par conversion dans un cristal de PPLN vers une caméra CMOS. Les performances en sensibilité obtenues sont dans les deux expériences meilleures d’un ordre de grandeur que les détections directes avec les détecteurs habituellement utilisés. / There is a wide range of applications in active infrared detection technologies in defense and security. However, the limited range available by these systems limits their developments. Increasing sensors sensitivity is a key milestone to improve this range. Indeed, noise in infrared detectors is much higher than for visible detectors due to some physical and technological issues. The key idea of this manuscript is to use nonlinear optical technologies to convert the infrared signal to detect into the visible spectrum and use all the benefits of silicon based sensors. Recent advances in optical crystals and in pump laser regimes bring renewed interest to upconversion detection for some specific application cases identified in this thesis. A novel and easy method to improve the number of converted modes has been proposed after a careful study of multimode conversion both temporally and spatially. In order to give figures on detection improvement using upconversion, we conducted a theoretical and numerical study of the multimode conversion as well as two sets of experiments. The first one, using conversion in an OP-GaAs crystal and a monodetector addresses mid-infrared spectroscopy applications. The second one addresses active imaging applications for target recognition and identification in the near-infrared. By using a PPLN crystal, the near-infrared image is detected on a low noise CMOS camera. A key milestone of this work is the sensitivity improvement of such a detection. Sensitivities obtained in each experiment are one order of magnitude better than with direct detection using common infrared sensors.
76

Nonlinear Optical Properties Of Organic Chromophores Calculated Within Time Dependent Density Functional Theory

Tafur, Sergio 01 January 2007 (has links)
Time Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity relationships of chromophores. On the other hand, the Sum Over States formalism in combination with semiempirical wavefunction methods has been used in the past for the design of simplified essential states models. These models can be applied to optimization of NLO properties of interest for applications. Unfortunately, TD-DFT can not be combined directly with SOS because state-to-state transition dipoles are not defined in the linear response TD approach. In this work, a second order CEO approach to TD-DFT is simplified so that properties of double excited states and state-to-state transition dipoles may be expressed through the combination of linear response properties. This approach is termed the a posteriori Tamm-Dancoff approximation (ATDA), and validated against high-level wavefunction theory methods. Sum over States (SOS) and related Two-Photon Transition Matrix formalism are then used to predict Two-Photon Absorption (2PA) profiles and anisotropy, as well as Second Harmonic Generation (SHG) properties. Numerical results for several conjugated molecules are in excellent agreement with CEO and finite field calculations, and reproduce experimental measurements well.
77

2D-material nanocomposites with nonlinear optical properties for laser protection

Ross, Nils January 2021 (has links)
Lasers are increasingly used for a wide range of different applications for both civil and military purposes. Due to the distinct properties of laser light, use of lasers often comes with a risk of damage to the human eye and other optical sensors. Therefore, an effective laser protection is needed. 2D-materials is a relatively new class of materials, which have shown to possess many unique properties compared to its bulk counterparts. Some 2D-materials exhibit nonlinear optical (NLO) properties, and specifically optical power limiting (OPL) effects, and have therefore been researched for laser protection applications. In this work, two different 2D-materials, MXene Ti3C2 and graphene oxide (GO), have been combined with a hybrid organic-inorganic polymer, a so called melting gel (MG), to synthesise nanocomposites possessing OPL effects for laser protection applications. Different methods of incorporating the 2D-materials in the polymer matrix as well as the effect on optical properties of different concentrations of 2D-materials were investigated. The prepared nanocomposites were characterised using optical microscopy, spectroscopy and OPL measurements in order to investigate and quantify their linear and nonlinear optical properties. The MG was optically clear, mechanically stable and easy to synthesise, which makes it a suitable candidate as a matrix for a laser protection nanocomposite. Additionally, it was possible to dope the MG with the two different 2D-materials to create nanocomposites showing desirable optical properties in the visible spectrum. However, many samples showed signs of clustered 2D-particles indicating that the dispersion could be improved. Finally, OPL measurements, performed at 532 nm, showed that the MG itself exhibited OPL effects, both 2D-materials showed a stronger OPL effect than the non-doped MG and that GO-doped samples gave a better protection than the MXene samples.
78

Nonlinear optical interactions in focused beams and nanosized structures

Amber, Zeeshan H., Spychala, Kai J., Eng, Lukas M., Rüsing, Michael 02 February 2024 (has links)
Thin-film materials from μm thickness down to single-atomic-layered 2D materials play a central role in many novel electronic and optical applications. Coherent, nonlinear optical (NLO) μ-spectroscopy offers insight into the local thickness, stacking order, symmetry, or electronic and vibrational properties. Thin films and 2D materials are usually supported on multi-layered substrates leading to (multi-) reflections, interference, or phase jumps at interfaces during μ-spectroscopy, which all can make the interpretation of experiments particularly challenging. The disentanglement of the influence parameters can be achieved via rigorous theoretical analysis. In this work, we compare two self-developed modeling approaches, a semi-analytical and a fully vectorial model, to experiments carried out in thin-film geometry for two archetypal NLO processes, second-harmonic and third-harmonic generation. In particular, we demonstrate that thin-film interference and phase matching do heavily influence the signal strength. Furthermore, we work out key differences between three and four photon processes, such as the role of the Gouy-phase shift and the focal position. Last, we can show that a relatively simple semi-analytical model, despite its limitations, is able to accurately describe experiments at a significantly lower computational cost as compared to a full vectorial modeling. This study lays the groundwork for performing quantitative NLO μ-spectroscopy on thin films and 2D materials, as it identifies and quantifies the impact of the corresponding sample and setup parameters on the NLO signal, in order to distinguish them from genuine material properties.
79

Adsorption and Transport of Drug-Like Molecules at the Membrane of Living Cells Studied by Time-Resolved Second-Harmonic Light Scattering

Sharifian Gh., Mohammad January 2018 (has links)
Understanding molecular interactions at the surfaces of cellular membranes, including adsorption and transport, is of fundamental importance in both biological and pharmaceutical studies. At present, particularly with respect to small and medium size (drug-like) molecules, it is desirable to gain an understanding of the mechanisms that govern membrane adsorption and transport. To characterize drug-membrane interactions and mechanisms governing the process of molecular uptake at cellular membranes in living organisms, we need to develop effective experimental techniques to reach quantitative and time-resolved analysis of molecules at the membrane surfaces. Also, we preferably want to develop label-free optical techniques suited for single-cell and live cell analysis. Here, I discuss the nonlinear optical technique, second-harmonic light scattering (SHS), for studying molecule-membrane interactions and transport of molecules at the membrane of living cells with real-time resolution and membrane surface-specificity. Time-resolved SHS can quantify adsorption and transport of molecules, with specific nonlinear optical properties, at living organisms without imposing any mechanical stress onto the membrane. This label-free and surface-sensitive technique can even differentiate molecular transport at individual membranes within a multi-membrane cell (e.g., bacteria). In this dissertation, I present our current research and accomplishments in extending the capabilities of the SHS technique to study molecular uptake kinetics at the membranes of living cells, to monitor bacteria membrane integrity, to characterize the antibacterial mechanism-of-action of antibiotic compounds, to update the molecular mechanism of the Gram-stain protocol, to pixel-wise mapping of the membrane viscosity of the living cells, and to probe drug-induced activation of bacterial mechanosensitive channels in vitro. / Chemistry
80

Growth and Physical Properties of Biaxial Nonlinear Optical Crystals of Ascorbic Acid Family

Raghavendra Rao, K January 2014 (has links) (PDF)
Saccharides, a class of organic materials, are potential candidates for nonlinear optical applications. Ascorbic acid is a sugar acid and is classified as a monosaccharide. The molecule of ascorbic acid has two chiral centers and, therefore, four stereoisomers. Among them, two are naturally occurring compounds; L-ascorbic acid and D-isoascorbic acid. From these two acids various salts and other derivatives could be synthesized. In this thesis, four compounds of the ascorbic acid family were selected for detailed study based on their nonlinearity, chemical and physical stability and their crystallization characteristics. The thesis is organized into seven chapters. The first chapter covers the theoretical background of nonlinear optics, especially, second harmonic generation. Second chapter details the experimental techniques and methodology adopted. Chapter 3 discusses the crystal structure, growth, physical and nonlinear optical properties of Lithium Disoascorbate monohydrate (LDAM). Detailed analysis of refractive index measurements employing Brewsters angle method and determination of phase matching curves, effective nonlinear coefficient, walk off angle etc are given. In Chapter 4, investigations on Sodium D-isoascorbate monohydrate (NDAM) are presented. Detailed characterization of the crystals including thermal, optical, dielectric properties are carried out. Analyses of dielectric dispersion based on Cole-Cole equation are discussed. Comprehensive studies on laser damage of the crystals are discussed. Chapter 5 discusses the nonlinear optical properties of the monoclinic D-isoascorbic acid (DIA). Chapter 6 presents studies on the triclinic Lithium L-ascorbate dihydrate (LLA) crystals. The crystals exhibit intense non-collinear second harmonic rings as they possesses large birefringence coupled with high second order nonlinear coefficients. The SHG conversion efficiency of these crystals is 15 times that of KDP. In the final chapter, a comprehensive summary of the work carried out is presented along with scope for further investigations.

Page generated in 0.078 seconds