• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 307
  • 92
  • 59
  • 51
  • 12
  • 10
  • 7
  • 6
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 644
  • 280
  • 161
  • 138
  • 137
  • 100
  • 72
  • 69
  • 67
  • 66
  • 66
  • 63
  • 57
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Bayesian Nonparametric Methods with Applications in Longitudinal, Heterogeneous and Spatiotemporal Data

Duan, Li 19 October 2015 (has links)
No description available.
352

A Robust Adaptive Autonomous Approach to Optimal Experimental Design

GU, Hairong January 2016 (has links)
No description available.
353

Bayesian Nonparametric Reliability Analysis Using Dirichlet Process Mixture Model

Cheng, Nan 03 October 2011 (has links)
No description available.
354

Sequential Imputation and Linkage Analysis

Skrivanek, Zachary 20 December 2002 (has links)
No description available.
355

SIGNAL DETECTION THEORY: A PROPOSAL FOR A NONPARAMETRIC MODEL

Turner, Brandon Michael 03 September 2009 (has links)
No description available.
356

Bayesian Nonparametric Models for Ranked Set Sampling

Gemayel, Nader M. 30 July 2010 (has links)
No description available.
357

An Adaptive Nonparametric Method for Two-Dimensional Dose Optimization of a Text Messaging Intervention

Nikahd, Melica 09 August 2022 (has links)
No description available.
358

STATISTICAL METHODS FOR SPECTRAL ANALYSIS OF NONSTATIONARY TIME SERIES

Bruce, Scott Alan January 2018 (has links)
This thesis proposes novel methods to address specific challenges in analyzing the frequency- and time-domain properties of nonstationary time series data motivated by the study of electrophysiological signals. A new method is proposed for the simultaneous and automatic analysis of the association between the time-varying power spectrum and covariates. The procedure adaptively partitions the grid of time and covariate values into an unknown number of approximately stationary blocks and nonparametrically estimates local spectra within blocks through penalized splines. The approach is formulated in a fully Bayesian framework, in which the number and locations of partition points are random, and fit using reversible jump Markov chain Monte Carlo techniques. Estimation and inference averaged over the distribution of partitions allows for the accurate analysis of spectra with both smooth and abrupt changes. The new methodology is used to analyze the association between the time-varying spectrum of heart rate variability and self-reported sleep quality in a study of older adults serving as the primary caregiver for their ill spouse. Another method proposed in this dissertation develops a unique framework for automatically identifying bands of frequencies exhibiting similar nonstationary behavior. This proposal provides a standardized, unifying approach to constructing customized frequency bands for different signals under study across different settings. A frequency-domain, iterative cumulative sum procedure is formulated to identify frequency bands that exhibit similar nonstationary patterns in the power spectrum through time. A formal hypothesis testing procedure is also developed to test which, if any, frequency bands remain stationary. This method is shown to consistently estimate the number of frequency bands and the location of the upper and lower bounds defining each frequency band. This method is used to estimate frequency bands useful in summarizing nonstationary behavior of full night heart rate variability data. / Statistics
359

Generalized Empirical Bayes: Theory, Methodology, and Applications

Fletcher, Douglas January 2019 (has links)
The two key issues of modern Bayesian statistics are: (i) establishing a principled approach for \textit{distilling} a statistical prior distribution that is \textit{consistent} with the given data from an initial believable scientific prior; and (ii) development of a \textit{consolidated} Bayes-frequentist data analysis workflow that is more effective than either of the two separately. In this thesis, we propose generalized empirical Bayes as a new framework for exploring these fundamental questions along with a wide range of applications spanning fields as diverse as clinical trials, metrology, insurance, medicine, and ecology. Our research marks a significant step towards bridging the ``gap'' between Bayesian and frequentist schools of thought that has plagued statisticians for over 250 years. Chapters 1 and 2---based on \cite{mukhopadhyay2018generalized}---introduces the core theory and methods of our proposed generalized empirical Bayes (gEB) framework that solves a long-standing puzzle of modern Bayes, originally posed by Herbert Robbins (1980). One of the main contributions of this research is to introduce and study a new class of nonparametric priors ${\rm DS}(G, m)$ that allows exploratory Bayesian modeling. However, at a practical level, major practical advantages of our proposal are: (i) computational ease (it does not require Markov chain Monte Carlo (MCMC), variational methods, or any other sophisticated computational techniques); (ii) simplicity and interpretability of the underlying theoretical framework which is general enough to include almost all commonly encountered models; and (iii) easy integration with mainframe Bayesian analysis that makes it readily applicable to a wide range of problems. Connections with other Bayesian cultures are also presented in the chapter. Chapter 3 deals with the topic of measurement uncertainty from a new angle by introducing the foundation of nonparametric meta-analysis. We have applied the proposed methodology to real data examples from astronomy, physics, and medical disciplines. Chapter 4 discusses some further extensions and application of our theory to distributed big data modeling and the missing species problem. The dissertation concludes by highlighting two important areas of future work: a full Bayesian implementation workflow and potential applications in cybersecurity. / Statistics
360

Functional Data Models for Raman Spectral Data and Degradation Analysis

Do, Quyen Ngoc 16 August 2022 (has links)
Functional data analysis (FDA) studies data in the form of measurements over a domain as whole entities. Our first focus is on the post-hoc analysis with pairwise and contrast comparisons of the popular functional ANOVA model comparing groups of functional data. Existing contrast tests assume independent functional observations within group. In reality, this assumption may not be satisfactory since functional data are often collected continually overtime on a subject. In this work, we introduce a new linear contrast test that accounts for time dependency among functional group members. For a significant contrast test, it can be beneficial to identify the region of significant difference. In the second part, we propose a non-parametric regression procedure to obtain a locally sparse estimate of functional contrast. Our work is motivated by a biomedical study using Raman spectroscopy to monitor hemodialysis treatment near real-time. With contrast test and sparse estimation, practitioners can monitor the progress of the hemodialysis within session and identify important chemicals for dialysis adequacy monitoring. In the third part, we propose a functional data model for degradation analysis of functional data. Motivated by degradation analysis application of rechargeable Li-ion batteries, we combine state-of-the-art functional linear models to produce fully functional prediction for curves on heterogenous domains. Simulation studies and data analysis demonstrate the advantage of the proposed method in predicting degradation measure than existing method using aggregation method. / Doctor of Philosophy / Functional data analysis (FDA) studies complex data structure in the form of curves and shapes. Our work is motivated by two applications concerning data from Raman spectroscopy and battery degradation study. Raman spectra of a liquid sample are curves with measurements over a domain of wavelengths that can identify chemical composition and whose values signify the constituent concentrations in the sample. We first propose a statistical procedure to test the significance of a functional contrast formed by spectra collected at beginning and at later time points during a dialysis session. Then a follow-up procedure is developed to produce a sparse representation of the contrast functional contrast with clearly identified zero and nonzero regions. The use of this method on contrast formed by Raman spectra of used dialysate collected at different time points during hemodialysis sessions can be adapted for evaluating the treatment efficacy in real time. In a third project, we apply state-of-the-art methodologies from FDA to a degradation study of rechargeable Li-ion batteries. Our proposed methods produce fully functional prediction of voltage discharge curves allowing flexibility in monitoring battery health.

Page generated in 0.057 seconds