Spelling suggestions: "subject:"nonperturbative"" "subject:"nonperturbatives""
1 |
Low-energy effective descriptions of Dark Matter detection and QCD spectroscopyXu, Yiming 12 March 2016 (has links)
In this dissertation, a low energy theory approach is applied to the studies of Dark Matter direct detection experiments and two-dimensional Quantum Chromodynamics (QCD) spectra. We build a general framework of non-relativistic effective field theory of Dark Matter direct detection using non-relativistic operators. Any Dark Matter particle theory can be translated into the coefficients of an effective operator and any effective operator can be related to a most general description of the nuclear response. Response functions are evaluated for common Dark Matter targets. Based on the effective field theory we perform an analysis of the experimental constraints on the full parameter space of elastically scattering Dark Matter. We also formulate an analytic approach to solving two-dimensional gauge theories. We find that in theories with confinement, in a conformal operator basis, the decoupling of high scaling-dimension operators from the low-energy spectrum occurs exponentially fast in their scaling-dimension. Consequently the low-energy spectrum of a strongly coupled system like QCD can be calculated using a truncated conformal basis, to an accuracy parametrized exponentially by the cutoff dimension. We apply the conformal basis approach in two models, a two-dimensional QCD with an adjoint fermion at large N, and a two-dimensional QCD with a fundamental fermion at finite N. It is shown that the low energy spectrum converges efficiently in both cases.
|
2 |
Solving strongly coupled quantum field theory using Lightcone Conformal TruncationXin, Yuan 03 December 2020 (has links)
Quantum Field Theory (QFT) is the language that describes a wide spectrum of physics. However, it is notoriously hard at strong coupling regime. We approach this problem in an old Quantum Mechanical method - keep a finite number of states and diagonalize the Hamiltonian as a finite-size matrix. To study a QFT, we take the Hamiltonian to be the Conformal Field Theory as the Ultraviolet fixed point of the theory's Renormalization Group Flow, deformed by a relevant operator. We use a recent framework known as the Lightcone Conformal Truncation (LCT), where we use conformal basis and lightcone quantization. As an application of the method, we study the two dimensional Supersymmetric (SUSY) Gross-Neveu-Yukawa Model. The model is expected to have a critical point in the universality class of tri-critical Ising model, a massive phase and a massless SUSY-breaking phase. We use the LCT to compute the spectrum and the spectral density of the theory at all couplings and map the entire phase diagram.
|
3 |
Bifurcation problems in chaotically stirred reaction-diffusion systemsMenon, Shakti Narayana January 2008 (has links)
Doctor of Philosophy / A detailed theoretical and numerical investigation of the behaviour of reactive systems under the influence of chaotic stirring is presented. These systems exhibit stationary solutions arising from the balance between chaotic advection and diffusion. Excessive stirring of such systems results in the termination of the reaction via a saddle-node bifurcation. The solution behaviour of these systems is analytically described using a recently developed nonperturbative, non-asymptotic variational method. This method involves fitting appropriate parameterised test functions to the solution, and also allows us to describe the bifurcations of these systems. This method is tested against numerical results obtained using a reduced one-dimensional reaction-advection-diffusion model. Four one- and two-component reactive systems with multiple homogeneous steady-states are analysed, namely autocatalytic, bistable, excitable and combustion systems. In addition to the generic stirring-induced saddle-node bifurcation, a rich and complex bifurcation scenario is observed in the excitable system. This includes a previously unreported region of bistability characterised by a hysteresis loop, a supercritical Hopf bifurcation and a saddle-node bifurcation arising from propagation failure. Results obtained with the nonperturbative method provide a good description of the bifurcations and solution behaviour in the various regimes of these chaotically stirred reaction-diffusion systems.
|
4 |
Bifurcation problems in chaotically stirred reaction-diffusion systemsMenon, Shakti Narayana January 2008 (has links)
Doctor of Philosophy / A detailed theoretical and numerical investigation of the behaviour of reactive systems under the influence of chaotic stirring is presented. These systems exhibit stationary solutions arising from the balance between chaotic advection and diffusion. Excessive stirring of such systems results in the termination of the reaction via a saddle-node bifurcation. The solution behaviour of these systems is analytically described using a recently developed nonperturbative, non-asymptotic variational method. This method involves fitting appropriate parameterised test functions to the solution, and also allows us to describe the bifurcations of these systems. This method is tested against numerical results obtained using a reduced one-dimensional reaction-advection-diffusion model. Four one- and two-component reactive systems with multiple homogeneous steady-states are analysed, namely autocatalytic, bistable, excitable and combustion systems. In addition to the generic stirring-induced saddle-node bifurcation, a rich and complex bifurcation scenario is observed in the excitable system. This includes a previously unreported region of bistability characterised by a hysteresis loop, a supercritical Hopf bifurcation and a saddle-node bifurcation arising from propagation failure. Results obtained with the nonperturbative method provide a good description of the bifurcations and solution behaviour in the various regimes of these chaotically stirred reaction-diffusion systems.
|
5 |
The R-matrix bootstrapHarish Murali (10723740) 30 April 2021 (has links)
In this thesis, we extend the numerical S-matrix bootstrap program to 1+1d theories with a boundary, where we bootstrap the 1-to-1 reflection matrix (R-matrix). We review the constraints that a physical R-matrix must obey, namely unitarity, analyticiy and crossing symmetry. We then carve out the allowed space of 2d R-matrices with the O(N) nonlinear sigma model and the periodic Yang Baxter solution in the bulk. We find a variety of integrable R-matrices along the boundary of the allowed space both with and without free parameters. The integrable models without a free parameter appear at vertices of the allowed space, while those with a free parameter occupy the whole boundary. We also introduce the extended analyticity constraint where we increase the domain of analyticity beyond the physical region. In some cases, the allowed space of R-matrices shrinks drastically and we observe new vertices which correspond to integrable theories. We also find a new integrable R-matrix through our numerics, which we later obtained by solving the boundary Yang--Baxter equation. Finally, we derive the dual to the extended analyticity problem and find that the formalism allows for R-matrices which do not saturate unitarity to lie on the boundary of the allowed region.
|
6 |
The nonperturbative renormalization group for quantum field theory in de De Sitter space / Le groupe de renormalisation non perturbatif pour la théorie quantique des champs en espace-temps de De SitterGuilleux, Maxime 28 September 2016 (has links)
La cosmologie moderne amène à étudier la théorie quantique des champs en espace-temps courbe. Les champs scalaires légers, notamment, génèrent un mécanisme simple pour l'inflation et les fluctuations primordiales. Cependant, les calculs de boucles de ces modèles contiennent des divergences infrarouges et séculaires qui requièrent des techniques de resommation. Dans ce but, on implémente le groupe de renormalisation non perturbatif pour des champs scalaires en espace-temps de De Sitter. Dans un premier temps, on applique l'Approximation de Potentiel Local (APL). On démontre que les effets infrarouges sont responsables d'une restauration de la symétrie, et qu'une masse est générée en accord avec l'approche stochastique. On étudie ensuite la limite d'espace-temps plat de notre formalisme en prenant la courbure $H\to 0$, ce qui reproduit un certain nombre de résultats connus. Enfin, on s'intéresse à l'expansion dérivative, qui va au-delà de l'APL. Son implémentation semble trop complexe dans le cas général d'un espace-temps courbe, mais les symétries de De Sitter permettent de trouver une représentation simple. On définit une prescription pour tous les ordres de l'expansion, puis on implémente le flot du terme de premier ordre dans le cas simple où la dépendance en champ est négligée / The nonperturbative renormalization group for quantum field theory in de Sitter space.The study of cosmology draws us to the topic of quantum fields in curved space-time. In particular, light scalar fields offer a simple mechanism for inflation and primordial fluctuations. When computing loop corrections to these models however, infrared and secular divergences appear which call for resummation techniques. To this end, we implement the nonperturbative renormalization group for quantum scalar fields on a fixed de Sitter background. First, the Local Potential Approximation (LPA) is applied. We show that there is always symmetry restoration due to infrared effects, and that mass is generated in agreement with the stochastic approach. Next, we study the flat space limit of our formalism by taking the curvature $H\to0$, and we check that it reproduces a number of known results. Finally, we discuss the derivative expansion, which goes beyond the LPA. Its implementation seems too complex in general curved space-times, but de Sitter symmetries allow for a simpler representation. We define a prescription for all orders of the expansion, and discuss the flow of the first order term in the simple case where we neglect the field dependency (LPA')
|
7 |
Consequences of a dynamical gluon massAguirre, John David Gómez January 2017 (has links)
Orientador: Prof. Dr. Alysson Fábio Ferrari / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2017. / Na literatura encontramos argumentos tanto fenomenológicos quanto teóricos que favorecem o congelamento da constante de acoplamento da QCD a valores moderados no
regime infravermelho. O acoplamento pode ser parametrizado em termos de uma massa
efetiva para o gluon (mg) obtida dinamicamente através das equações de Schwinger-
Dyson, cuja soluções são compatíveis com as simulações da QCD na rede. Primeiro nós
consideramos o processo de aniquilação elétron-pósitron em hádrons Re+e- até O(3s) e adotamos o método de smearing sugerido por Poggio, Quinn e Weinberg para confrontar
os dados experimentais com a teoria. Nós vamos usar como modelo teórico a
QCD com uma constante de acoplamento finita no regime de baixas energias. Para encontrar
o melhor fit entre os dados experimentais e teóricos, nós realizamos um test de
2, que dentro das incertezas do modelo , tem um valor mínimo quando mg=QCD está
entre 1.2 - 1.4. Esses valores concordam com outras determinações fenomenológicas da
razão mg=QCD e levam a uma carga efetiva s(0) 0.7. Nós comentamos como essas
cargas efetivas poderiam afetar a escala de massa da dualidade global, a qual indica a
fronteira entre a física perturbativa e não perturbativa.
Calculamos tanto o potencial efetivo aprimorado no caso da QED escalar e da QCD
com um escalar sem cor, como também a evolução do acoplamento escalar do Higgs
() no Modelo Padrão. Em ambos os casos consideramos pontos fixos. No caso da QCD
com o escalar sem carga de cor tanto a barreira associada ao polo de Landau quanto o
mínimo do potencial mudam. Por outro lado, encontramos que a existência dos pontos
fixos não perturbativos no infravermelho movem a evolução do acoplamento escalar
na direcção da estabilidade. Para certos valores da constante de acoplamento da QCD no
infravermelho, o potencial do Modelo Padrão pode ficar estável até a escala de Planck. / Several phenomenological and theoretical arguments favor a freezing of the Quantum
Chromodynamics (QCD) coupling constant in the infrared region at one moderate value.
This coupling can be parameterized in terms of an effective dynamical gluon mass (mg)
which is determined through Schwinger-Dyson equations, whose solutions are compatible
with QCD lattice simulations. First we consider the electron-positron annihilation
process into hadrons Re+e- up to O(3s) and we adopt the smearing method suggest
by Poggio, Quinn and Weinberg to confront the experimental data with theory. As a
theoretical model we use the aforementioned QCD coupling constant frozen in the low
energy regime. In order to find the best fit between experimental data and theory we
perform a 2 study, that, within the uncertainties of the approach, has a minimum value
when mg=QCD is in the range 1.2 - 1.4. These values are in agreement with other
phenomenological determinations of this ratio and lead to an infrared effective charge
s(0) 0.7. We comment how this effective charge may affect the global duality mass
scale that indicates the frontier between perturbative and nonperturbative physics.
We also compute the improved effective potential in the case of scalar QED and QCD
with a colorless scalar and compute the Standard Model scalar boson Higgs coupling
() evolution. In both cases we consider fixed points. In the case of QCD with a colorless
scalar not only the barrier associated to the Landau pole is changed but the local minimum
of the potential is also changed. On the other hand we find that the existence of
such nonperturbative infrared fixed point moves the evolution towards stability. For
the phenomenological preferred IR value of the QCD coupling constant the standard
model Higgs potential may be stable up to the Planck scale.
|
8 |
Dynamique et transport au voisinage d'une transition de phase quantique en dimension deux / Dynamics and transport in the vicinity of a quantum phase transition in dimension twoRose, Félix 19 September 2017 (has links)
Nous étudions le modèle O (N) relativiste, une généralisation quantique de la théorie φ⁴ utilisée en physique statistique pour étudier des transitions de phase. Ce modèle décrit certaines transitions de phase quantiques telles que la transition isolant de Mott-superfluide dans un gaz de bosons piégés dans un réseau optique ou la transition paramagnétique-antiferromagnétique dans un aimant. En deux dimensions d’espace, ces systèmes sont fortement corrélés près de la transition. Nous les étudions à l’aide du groupe de renormalisation non perturbatif, une formulation du groupe de renormalisation de Wilson. Nous nous intéressons aux propriétés universelles au voisinage de la transition de phase quantique à température nulle. Ainsi, nous déterminons les fonctions d’échelle universelles qui définissent la thermodynamique et démontrons que ces fonctions sont reliées à celles décrivant la force de Casimir critique dans un système classique tridimensionel. Ensuite, nous étudions le spectre d’excitation dans la phase ordonnée à température nulle. Pour N = 2 et 3, nous établissons l’existence d’un mode d’amplitude aussi appelé « mode de Higgs » par analogie avec le mécanisme de Higgs en physique des hautes énergies. Pour N = 1, nous montrons l’existence d’un état lié pour des dimensions proches de trois. Enfin, nous calculons la dépendance en fréquence de la conductivité à température nulle et confirmons son universalité, en particulier à la transition. Nous établissons que l’une des composantes du tenseur de conductivité dans la phase ordonnée est une quantité « superuniverselle », ne dépendant ni de la distance au point critique ni de N. / We study the relativistic O (N) model, a quantum generalization of the φ⁴ theory used in statistical physics to study some phase transitions. This model describes quantum phase transitions such as the Mott insulator-superluid transition in boson gases trapped in optical latices or the paramagnetic-antiferromagnetic transition in magnets. In two space dimensions, these systems exhibit strong correlations near the transition. We study them using the nonperturbative renormalization group, an implementation of Wilson’s renormalization group. We focus on the universal properties in the vicinity of the zero-temperature quantum phase transition. We determine the universal scaling functions which define the thermodynamics and we show that these functions are related to those describing the critical Casimir forces in a three-dimensional system. Then, we study the excitation spectrum in the zero-temperature ordered phase. For N = 2 and 3, we establish the existence of an amplitude mode, also called “Higgs mode” by analogy with the Higgs mechanism in high-energy physics. For N = 1, we show the existence of a bound state at dimensions close to three. Finally, we compute the frequency-dependent conductivity at zero temperature and confirm its universal character, in particular at the transition. We prove that one of the components of the conductivity tensor in the ordered phase is a “superuniversal” quantity depending neither on the distance to the critical point nor on N.
|
9 |
Nonequilibrium critical phenomena : exact Langevin equations, erosion of tilted landscapes. / Phénomènes critiques hors-équilibre : équations de Langevin exactes, érosion d'un paysage en penteDuclut, Charlie 11 September 2017 (has links)
L'objet de cette thèse est l'étude de phénomènes critiques hors-équilibre. Pour décrire ces systèmes, l'utilisation d'équations de Langevin est souvent incontournable car elles permettent une description heuristique relativement simple du phénomène, construite en ajoutant un terme de bruit à la dynamique macroscopique. J'ai montré qu'il est toutefois possible, dans le cas des processus de réaction-diffusion, d'aller au delà de cette approche et de dériver une équation de Langevin exacte qui décrit la dynamique au niveau microscopique. Une seconde partie de ma thèse est consacrée à l'étude de modèles spécifiques de phénomènes critiques hors-équilibre à l'aide du groupe de renormalisation non-perturbatif (NPRG), une version moderne des blocs de spins de Wilson et Kadanoff. À l'équilibre, cet outil tire son succès de sa capacité à contrôler les fluctuations au voisinage de la transition grâce à un régulateur. Hors équilibre, les fluctuations temporelles doivent être traitées de la même façon, et j'ai donc conçu un régulateur qui contrôle à la fois les fluctuations spatiales et temporelles. Enfin, j'ai appliqué le NPRG à un modèle d'érosion. En effet, l'apparition générique de lois d'échelles dans les paysages suggère l'existence d'un mécanisme sous-jacent qui conduit ces systèmes à leur point critique. L'équation de Kardar-Parisi-Zhang modélise l'érosion à grande échelle (>2 km), mais ne s'accorde pas aux observations à plus petite échelle. Un modèle différent, tenant compte de l'anisotropie (la pente d'une montagne), fut donc suggéré. À l'aide du NPRG, je montre que ce modèle possède une ligne de points fixes qui correspond à un domaine continu d'exposants d'échelle. / This manuscript is focused on the study of critical phenomena taking place out-of-equilibrium. In the description of such phenomena, Langevin equations are ubiquitous and are usually derived in a phenomenological way by adding a noise term to a deterministic mean-field equation. However, I show that for reaction-diffusion processes it is in fact possible to derive an exact Langevin equation from the microscopic process. A second part of my thesis work has been devoted to the study of specific nonequilibrium critical phenomena using the nonperturbative renormalization group (NPRG), which is a modern implementation of Wilson and Kadanoff's block-spin idea. This tool, very powerful in an equilibrium context, takes care of the growing spatial fluctuations that arise near criticality through the use of a regulator. In a nonequilibrium context, the temporal fluctuations also have to be controlled. I have therefore designed a regulator that tackles both spatial and temporal fluctuations. Finally, I have applied the NPRG techniques to a model of landscape erosion: indeed, the generic scaling behaviour that appear in erosional landscapes suggests the existence of an underlying mechanism naturally fine-tuned to be critical. The Kardar-Parisi-Zhang equation seems to give a correct model for landscape erosion at large length scale (>2 km), but fails to predict the scaling observed at smaller scale. A different model was thus suggested which takes into account the intrinsic anisotropy at smaller length scale (the slope of the mountain). Using NPRG techniques, I show that this model possesses a line of fixed points associated with a continuous range of scaling exponents.
|
10 |
Classically spinning and isospinning non-linear σ-model solitonsHaberichter, Mareike Katharina January 2014 (has links)
We investigate classically (iso)spinning topological soliton solutions in (2+1)- and (3+1)-dimensional models; more explicitly isospinning lump solutions in (2+1) dimensions, Skyrme solitons in (2+1) and (3+1) dimensions and Hopf soliton solutions in (3 +1) dimensions. For example, such soliton types can be used to describe quasiparticle excitations in ferromagnetic quantum Hall systems, can model spin and isospin states of nuclei and may be candidates to model glueball configurations in QCD.Unlike previous work, we do not impose any spatial symmetries on the isospinning soliton configurations and we explicitly allow the isospinning solitons to deform and break the symmetries of the static configurations. It turns out that soliton deformations clearly cannot be ignored. Depending on the topological model under investigation they can give rise to new types of instabilities, can result in new solution types which are unstable for vanishing isospin, can rearrange the spectrum of minimal energy solutions and can allow for transitions between different minimal-energy solutions in a given topological sector. Evidently, our numerical results on classically isospinning, arbitrarily deforming solitons are relevant for the quantization of classical soliton solutions.
|
Page generated in 0.0424 seconds