• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of free and bound excitons in GaN nanowires

Hauswald, Christian 17 March 2015 (has links)
GaN-Nanodrähte können mit einer hohen strukturellen Perfektion auf verschiedenen kristallinen und amorphen Substraten gewachsen werden. Sie bieten somit faszinierende Möglichkeiten, sowohl zur Untersuchung von fundamentalen Eigenschaften des Materialsystems, als auch in der Anwendung in optoelektronischen Bauteilen. Obwohl bereits verschiedene Prototypen solcher Bauteile vorgestellt wurden, sind viele grundlegende Eigenschaften von GaN-Nanodrähten noch ungeklärt, darunter die interne Quanteneffizienz (IQE), welche ein wichtiges Merkmal für optoelektronische Anwendungen darstellt. Die vorliegende Arbeit präsentiert eine detaillierte Untersuchung der Rekombinationsdynamik von Exzitonen, in selbst-induzierten und selektiv gewachsenen GaN Nanodraht-Proben, welche mit Molekularstrahlepitaxie hergestellt wurden. Die zeitaufgelösten Photolumineszenz (PL)-Experimente werden durch Simulationen ergänzt, welche auf Ratengleichungs-Modellen basieren. Es stellt sich heraus, dass die Populationen von freien und gebundenen Exzitonen gekoppelt sind und zwischen 10 und 300 K von einem nichtstrahlenden Kanal beeinflusst werden. Die Untersuchung von Proben mit unterschiedlichem Nanodraht-Durchmesser und Koaleszenzgrad zeigt, dass weder die Nanodraht-Oberfläche, noch Defekte als Folge von Koaleszenz diesen nichtstrahlenden Kanal induzieren. Daraus lässt sich folgern, dass die kurze Zerfallszeit von Exzitonen in GaN-Nanodrähten durch Punktdefekte verursacht wird, welche die IQE bei 10 K auf 20% limitieren. Der häufig beobachtete biexponentiellen PL-Zerfall des Donator-gebundenen Exzitons wird analysiert und es zeigt sich, dass die langsame Komponente durch eine Kopplung mit Akzeptoren verursacht wird. Motiviert durch Experimente, welche eine starke Abhängigkeit der PL-Intensität vom Nanodraht-Durchmesser zeigen, wird die externen Quanteneffizienz von geordneten Nanodraht-Feldern mit Hilfe numerischer Simulationen der Absorption und Extraktion von Licht in diesen Strukturen untersucht. / GaN nanowires (NWs) can be fabricated with a high structural perfection on various crystalline and amorphous substrates. They offer intriguing possibilities for both fundamental investigations of the GaN material system as well as applications in optoelectronic devices. Although prototype devices based on GaN NWs have been presented already, several fundamental questions remain unresolved to date. In particular, the internal quantum efficiency (IQE), an important basic figure of merit for optoelectronic applications, is essentially unknown for GaN NWs. This thesis presents a detailed investigation of the exciton dynamics in GaN NWs using continuous-wave and time-resolved photoluminescence (PL) spectroscopy. Spontaneously formed ensembles and ordered arrays of GaN NWs grown by molecular-beam epitaxy are examined. The experiments are combined with simulations based on the solution of rate equation systems to obtain new insights into the recombination dynamics in GaN NWs at low temperatures. In particular, the free and bound exciton states in GaN NWs are found to be coupled and affected by a nonradiative channel between 10 and 300 K. The investigation of samples with different NW diameters and coalescence degrees conclusively shows that the dominating nonradiative channel is neither related to the NW surface nor to coalescence-induced defects. Hence, we conclude that nonradiative point defects are the origin of the fast recombination dynamics in GaN NWs, and limit the IQE of the investigated samples to about 20% at cryogenic temperatures. We also demonstrate that the frequently observed biexponential decay for the donor-bound exciton originates from a coupling with the acceptor-bound exciton state in the GaN NWs. Motivated by an experimentally observed, strong dependence of the PL intensity of ordered GaN NW arrays on the NW diameter, we perform numerical simulations of the light absorption and extraction to explore the external quantum efficiency of these samples.
2

Properties of Zincblende GaN and (In,Ga,Al)N Heterostructures grown by Molecular Beam Epitaxy

Müllhäuser, Jochen R. 17 June 1999 (has links)
Während über hexagonales (alpha) GaN zum ersten Mal 1932 berichtet wurde, gelang erst 1989 die Synthese einer mit Molekularstrahlepitaxie (MBE) auf 3C-SiC epitaktisch gewachsenen, metastabilen kubischen (eta) GaN Schicht. Die vorliegende Arbeit befaßt sich mit der Herstellung der Verbindungen eta-(In,Ga,Al)N mittels RF-Plasma unterstützter MBE auf GaAs(001) und den mikrostrukturellen sowie optischen Eigenschaften dieses neuartigen Materialsystems. Im Vergleich zur hexagonalen bietet die kubische Kristallstruktur auf Grund ihrer höheren Symmetrie potentielle Vorteile für die Anwendung in optischen und elektronischen Bauelementen. Viele wichtige Materialgrößen der kubischen Nitride sind jedoch noch gänzlich unbekannt, da sich die Synthese einkristalliner Schichten als sehr schwierig erweist. Das Ziel dieser Arbeit ist es daher erstens, die technologischen Grenzen der Herstellung von bauelementrelevanten kubischen (In,Ga,Al)N Heterostrukturen auszuweiten und zweitens, einen Beitrag zur Aufklärung der bis dato wenig bekannten optischen und elektronischen Eigenschaften des GaN und der Mischkristalle In GaN zu leisten. Zunächst wird ein optimierter MBE Prozess unter Einsatz einer Plasmaquelle hohen Stickstofflusses vorgestellt, welcher nicht nur die reproduzierbare Epitaxie glatter, einphasiger GaN Nukleationsschichten auf GaAs ermöglicht. Vielmehr können damit auch dicke GaN. Schichten mit glatter Oberflächenmorphologie hergestellt werden, welche die Grundlage komplizierterer eta-(In,Ga,Al)N Strukturen bilden. An einer solchen GaN Schicht mit einer mittleren Rauhigkeit von nur 1.5 nm werden dann temperaturabhängige Reflexions- und Transmissionsmessungen durchgeführt. Zur Auswertung der Daten wird ein numerisches Verfahren entwickelt, welches die Berechnung des kompletten Satzes von optischen Konstanten im Spektralgebiet 2.0 = 0.4 wären grün-gelbe Laserdioden. Zusammenfassung in PostScript / While the earliest report on wurtzite (alpha) GaN dates back to 1932, it was not until 1989 that the first epitaxial layer of metastable zincblende (eta) GaN has been synthesized by molecular beam epitaxy (MBE) on a 3C-SiC substrate. The present work focuses on radio frequency (RF) plasma-assisted MBE growth, microstructure, and optical properties of the eta-(In,Ga,Al)N material system on GaAs(001). Due to their higher crystal symmetry, these cubic nitrides are expected to be intrinsically superior for (opto-) electronic applications than the widely employed wurtzite counterparts. Owing to the difficulties of obtaining single-phase crystals, many important material constants are essentially unknown for the cubic nitrides. The aim of this work is therefore, first, to push the technological limits of synthesizing device-relevant zincblende (In,Ga,Al)N heterostructures and, second, to determine the basic optical and electronic properties of GaN as well as to investigate the hardly explored alloy InGaN. An optimized MBE growth process is presented which allows not only the reproducible nucleation of smooth, monocrystalline GaN layers on GaAs using a high-nitrogen-flow RF plasma source. In particular, thick single-phase GaN layers with smooth surface morphology are obtained being a prerequisite for the synthesis of ternary eta-(Ga,In,Al)N structures. Temperature dependent reflectance and transmittance measurements are carried out on such a GaN film having a RMS surface roughness as little as 1.5 nm. A numerical method is developed which allows to extract from these data the complete set of optical constants for photon energies covering the transparent as well as the strongly absorbing spectral range (2.0 -- 3.8 eV). Inhomogeneities in the refractive index leading to finite coherence effects are quantitatively analyzed by means of Monte Carlo simulations. The fundamental band gap EG(T) of GaN is determined for 5 < T < 300 K and the room temperature density of states is investigated. Systematic studies of the band edge photoluminescence (PL) in terms of transition energies, lineshapes, linewidths, and intensities are carried out for both alpha- and GaN as a function of temperature. Average phonon energies and coupling constants, activation energies for thermal broadening and quenching are determined. Excitation density dependent PL measurements are carried out for both phases in order to study the impact of nonradiative recombination processes at 300 K. A recombination model is applied to estimate the internal quantum efficiency, the (non)radiative lifetimes, as well as the ratio of the electron to hole capture coefficients for both polytypes. It is seen that the dominant nonradiative centers in the n-type material investigated act as hole traps which, however, can be saturated at already modest carrier injection rates. In summary, despite large defect densities in GaN due to highly mismatched heteroepitaxy on GaAs, band edge luminescence is observed up to 500 K with intensities comparable to those of state-of-the-art alpha-GaN. For the first time, thick InGaN films are fabricated on which blue and green luminescence can be observed up to 400 K for x=0.17 and x=0.4, respectively. Apart from bulk-like InGaN films, the first coherently strained InGaN/GaN (multi) quantum wells with In contents as high as 50 % and abrupt interfaces are grown. This achievement shows that a ternary alloy can be synthesized in a metastable crystal structure far beyond the miscibility limit of its binary constituents despite the handicap of highly lattice mismatched heteroepitaxy. The well widths of these structures range between 4 and 7 nm and are thus beyond the theoretically expected critical thickness for the strain values observed. It is to be expected that even higher In contents can be reached for film thicknesses below 5 nm. The potential application of such InGaN/GaN multi quantum wells with x >= 0.4 would thus be diode lasers operating in the green-yellow range. abstract in PostScript

Page generated in 0.1254 seconds