• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 2
  • 2
  • Tagged with
  • 40
  • 40
  • 27
  • 15
  • 11
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Simulações computacionais na proteína TM1030 da bactéria hipertermófila Thermotoga maritima / Computational simulations at TM1030 protein of hyperthermofile Thermotoga maritima bacterium

Salcedo, David Leandro Palomino 19 January 2016 (has links)
A Thermotoga marítima (Tm) é uma bactéria que vive em temperaturas na faixa dos 65 até 90°C, com temperatura ótima do redor dos 80°C. A proteína TM1030 de Tm, é um regulador transcricional da família TetR (Tetracycline repressor protein) reguladores da expressão génica das proteínas TetA e TetB (Tetracycline resistance protein). Neste trabalho se rodarem 200ns de trajetória de dinâmica molecular a três temperaturas (293, 323 e 353K) da proteína TM1030 (PDB-1Z77) usando o pacote GROMACS com o potencial Amber99 e solvente explicito numa caixa cúbica com 90Å de comprimento, observando que RMSD da estrutura média da trajetória é menor em relação à estrutura cristalográfica, além disso que num primer momento esse RMSD tem uma mudança grande e que se estabiliza com uma maior velocidade nas maiores temperaturas. Também foi feito um analise de modos normais na mesma estrutura usando o mesmo potencial, mas com solvente implícito, usando o modelo GBSA, minimizando a estrutura até ter um coeficiente de força média de 6,4x10-8J·mol-1·cm-1 que assegura um bom mínimo local. Das trajetórias simuladas a partir das 6 menores frequências se achou uma relação com os movimentos observados nas dinâmicas moleculares e os esperados na transição alostérica entre as duas estruturas cristalográficas. Finalmente se calculam os fatores de temperatura das três trajetórias de dinâmica molecular, observando que seus esses fatores de temperatura aumentam com o aumento da temperatura, contrario do esperado da cristalografia onde diminuam com o aumento da temperatura do sistema. / The Thermotoga maritima (Tm) is a bacterium who can lives at temperatures of 65 to 90°C, with optimum temperature around of 80°C. The TM1030 protein of Tm is a transcriptional regulator from TetR family (Tetracycline repressor protein) regulators of gene expression of the TetA and TetB protein (Tetracycline resistance protein). In this work 200ns of molecular dynamics trajectory was run at three temperatures (293, 323 and 353K) of TM1030 protein (PDB-1Z77) using GROMACS package with Amber99 potential and explicit solvent in a cubic box with length 90A, noting that RMSD of the average structure of the trajectory is smaller with respect to the crystallographic structure, in addition, in a first time this RMSD have a large change and stabilizes at a higher speed at higher temperatures. There was also an analysis of normal modes on the same structure using the same potential, but with implicit solvent, using the GBSA model, minimizing the structure to have a medium force coefficient of 6,4x10-8J·mol-1·cm-1which ensures a good local minimum. Of the trajectories simulated from 6 lower frequencies was found a relationship with the movements observed in molecular dynamics and expected the allosteric transition between the two crystal structures. Finally was calculate the temperature factor of the three trajectories of molecular dynamics, observing their temperature factors increase with increasing temperature, contrary to expectations of crystallography which decrease with the increase of the system temperature.
32

Simulações computacionais na proteína TM1030 da bactéria hipertermófila Thermotoga maritima / Computational simulations at TM1030 protein of hyperthermofile Thermotoga maritima bacterium

David Leandro Palomino Salcedo 19 January 2016 (has links)
A Thermotoga marítima (Tm) é uma bactéria que vive em temperaturas na faixa dos 65 até 90°C, com temperatura ótima do redor dos 80°C. A proteína TM1030 de Tm, é um regulador transcricional da família TetR (Tetracycline repressor protein) reguladores da expressão génica das proteínas TetA e TetB (Tetracycline resistance protein). Neste trabalho se rodarem 200ns de trajetória de dinâmica molecular a três temperaturas (293, 323 e 353K) da proteína TM1030 (PDB-1Z77) usando o pacote GROMACS com o potencial Amber99 e solvente explicito numa caixa cúbica com 90Å de comprimento, observando que RMSD da estrutura média da trajetória é menor em relação à estrutura cristalográfica, além disso que num primer momento esse RMSD tem uma mudança grande e que se estabiliza com uma maior velocidade nas maiores temperaturas. Também foi feito um analise de modos normais na mesma estrutura usando o mesmo potencial, mas com solvente implícito, usando o modelo GBSA, minimizando a estrutura até ter um coeficiente de força média de 6,4x10-8J·mol-1·cm-1 que assegura um bom mínimo local. Das trajetórias simuladas a partir das 6 menores frequências se achou uma relação com os movimentos observados nas dinâmicas moleculares e os esperados na transição alostérica entre as duas estruturas cristalográficas. Finalmente se calculam os fatores de temperatura das três trajetórias de dinâmica molecular, observando que seus esses fatores de temperatura aumentam com o aumento da temperatura, contrario do esperado da cristalografia onde diminuam com o aumento da temperatura do sistema. / The Thermotoga maritima (Tm) is a bacterium who can lives at temperatures of 65 to 90°C, with optimum temperature around of 80°C. The TM1030 protein of Tm is a transcriptional regulator from TetR family (Tetracycline repressor protein) regulators of gene expression of the TetA and TetB protein (Tetracycline resistance protein). In this work 200ns of molecular dynamics trajectory was run at three temperatures (293, 323 and 353K) of TM1030 protein (PDB-1Z77) using GROMACS package with Amber99 potential and explicit solvent in a cubic box with length 90A, noting that RMSD of the average structure of the trajectory is smaller with respect to the crystallographic structure, in addition, in a first time this RMSD have a large change and stabilizes at a higher speed at higher temperatures. There was also an analysis of normal modes on the same structure using the same potential, but with implicit solvent, using the GBSA model, minimizing the structure to have a medium force coefficient of 6,4x10-8J·mol-1·cm-1which ensures a good local minimum. Of the trajectories simulated from 6 lower frequencies was found a relationship with the movements observed in molecular dynamics and expected the allosteric transition between the two crystal structures. Finally was calculate the temperature factor of the three trajectories of molecular dynamics, observing their temperature factors increase with increasing temperature, contrary to expectations of crystallography which decrease with the increase of the system temperature.
33

Efficient computational strategies enabling insights into the glass transition

Hung, Jui-Hsiang 24 May 2018 (has links)
No description available.
34

Molecular dynamics of nanometric layers of glass formers in interaction with solid substrates

Mapesa, Emmanuel Urandu 30 October 2014 (has links)
Broadband Dielectric Spectroscopy (BDS) in combination with a nanostructured electrode arrangement – which circumvents the conventional need to evaporate metal electrodes onto soft matter – is used to study the molecular dynamics of several glass forming materials confined in nanometric (> 5 nm) layers. Other complementary experimental tools employed in this work include spectroscopic vis-Ellipsometry (SE), AC-chip calorimetry (ACC), X-ray reflectrometry (XRR), Differential Scanning Calorimetry (DSC) and Atomic Force Microscopy (AFM). The latter is used to characterize the topography of the samples and to determine their thicknesses. Under the conditions of annealing samples (Tg + 50K) in high oil-free vacuum (10E-6 mbars) for at least 12 h and carrying out measurements in inert (dry nitrogen or argon) atmosphere, it is found for all studied thin layers that the structural relaxation, and hence the dynamic glass transition – in its mean relaxation times – remains within a margin ±3 K from the respective bulk behaviour. It is revealed, inter alia, that the one-dimensional confinement of thin films introduces restrictions on other (slower) molecular relaxation processes which manifest, depending on the specific system under investigation, as (i) an interruption of the end-to-end (normal mode) fluctuation of the chains, or (ii) a slowing down of the delta-relaxation when the system is cooled towards glass-formation. Furthermore, (iii) evidence is provided to show that the dimensionality of confinement plays a significant role in determining the resulting dynamics. A molecular understanding of these findings is given, and the discussion presented with respect to the on-going international debate about dynamics in confinement.:1. Introduction 2. The glass transition and chain dynamics 2.1 The phenomenology of the glass transition 2.2 Theories of the glass transition 2.2.1 Free volume theories 2.2.2 Cooperative concepts 2.2.3 Mode-coupling theory 2.3 Dynamics of polymer chains in melt 2.4 The dynamic glass transition in confinement 2.4.1 Experiments: state-of-the-art 2.4.2 Theoretical attempts at explaining dynamics in confinement 3. Sample preparation and experimental techniques 3.1 Thin-film preparation by spin-coating 3.1.1 Films on glass slides 3.1.2 Films on silicon wafers 3.1.3 Reproducibility of sample preparation 3.1.4 Stability of thin film samples 3.1.5 Film thickness determination 3.1.6 Sample annealing experiments 3.2 Use of nanostructured electrodes – a novel approach 3.3 Poly(cis-1,4-isoprene) (PI) in porous media 3.4 Experimental techniques 3.4.1 Broadband Dielectric Spectroscopy (BDS) 3.4.1.1 Polarization 3.4.1.2 Dielectric relaxation 3.4.1.3 Debye relaxation 3.4.1.4 Non-Debye relaxation 3.4.1.5 Dielectric data in the time domain 3.4.1.6 Conductivity contribution 3.4.1.7 The distribution of relaxation times 3.4.1.8 BDS – summary 3.4.2 Spectroscopic Ellipsometry (SE) 3.4.3 AC-chip calorimetry (ACC) 4. Results and Discussion 4.1 Effect of sample geometry on measured dynamics 4.1.1 Introduction 4.1.2 Experimental details 4.1.3 Results and discussion 4.1.4 Summary 4.2 Dynamics of polystyrene in a wide range of molecular weights 4.2.1 Introduction 4.2.2 Experimental details 4.2.3 Results and discussion 4.2.4 Summary 4.3 Molecular dynamics of itraconazole confined in thin supported layers 4.3.1 Introduction 4.3.2 Experimental details 4.3.3 Results and discussion 4.3.4 Summary 4.4 Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) 4.4.1 Introduction 4.4.2 Experimental details and data analysis 4.4.2.1 Sample preparation 4.4.2.2 Data analysis 4.4.3 Results and discussion 4.4.3.1 1- versus 2-D confinement of poly(cis-1,4-isoprene) 4.4.4 Summary 5 Conclusions 5.1 Dynamics in confinement – a wider perspective
35

Étude à l'échelle moléculaire des protéines-G couplées à leurs récepteurs. / Molecular scale study of G-proteins coupled to the their receptors.

Louet, Maxime 21 November 2012 (has links)
Les protéines-G hétérotrimériques, constituées des sous-unités α, β et γ, sont les premières actrices de la transduction du signal en interagissant directement avec les Récepteurs Couplés aux protéines-G (RCPG). Les protéines-G ont la capacité de lier soit une molécule de GDP lorsqu'elles sont inactives, soit une molécule de GTP quand elles sont activées par un RCPG. Cet échange de nucléotide va conduire à la dissociation de l'hétérotrimère avec d'une part la sous-unité α seule, et d'autre part le complexe βγ. Chacune de ces entités va ensuite propager le signal dans le compartiment intracellulaire. Les travaux effectués au cours de cette thèse ont pour but de mieux comprendre la dynamique des protéines-G hétérotrimériques et de leurs récepteurs par des techniques de mécanique moléculaire incluant la Dynamique Moléculaire (DM) et l'Analyse de Modes Normaux (AMN). Dans un premier temps une AMN nous a permis de décrire les possibles mouvements de larges amplitudes des protéine-G. Nous avons à l'occasion de cette étude mis au point une méthode de sélection de Modes Normaux (MN) pertinents que nous avons appelés modes représentatifs. Nous avons également développé une méthode d'extraction de ligand (ici le GDP) le long de ces MN. Ceci nous a permis de montrer qu'un mouvement concerté de toute la sous-unité α pouvait permettre l'ouverture de la poche et la sortie du GDP. Dans un deuxième temps, nous avons affiné nos résultats en reconstruisant des profils d'énergie libre le long de plusieurs chemins de sortie possibles pour le GDP. Ainsi nous avons pu proposer un mécanisme fin de sortie du ligand et plusieurs résidus clés impliqués dans cette sortie. Nous avons également étudié le processus de dissociation de l'hétérotrimère par la technique de la Dynamique Moléculaire Dirigée. Il a été possible, à l'issue de cette étude, de proposer un mécanisme à l'échelle moléculaire de la séparation des sous-unités α et βγ. Pour finir, nous avons également étudié le macro-complexe RCPG : protéine-G. Deux études traitent des mécanismes d'activation et de couplage des protéines-G à son récepteur. Nous avons notamment montré que l'hétérotrimère de protéine-G contraint très fortement les mouvements du récepteur. Un mouvement très largement retrouvé dans le complexe ainsi que dans plusieurs autres RCPGs dont les structures sont connues a été proposé comme étant le mouvement d'activation des RCPG une fois complexés à leurs protéines partenaires. / Heterotrimeric G-proteins, constituted of α, β and γ subunits are the first actresses of the intra-cellular signal transduction and interact directly with G-protein Coupled Receptors (GPCR). The heterotrimer is able to bind either a GDP molecule (inactive state) or a GTP molecule (active state). The nucleotide exchange is triggered by the interaction with an activated GPCR and leads to the dissociation of the whole heterotrimer into two independant entities : α and tightly bound βγ subunits. Both subunits further propagate the signal into the intracellular compartment. Goals of the present work were to better understand the mechanics of G-proteins and GPCR by combining several molecular mechanics techniques such as Molecular Dynamics (MD) and Normal Mode Analysis (NMA).Firstly, we described large amplitude motions of the whole G-protein heterotrimer. In this study we developped a method to select relevant Normal Modes (NM), we called representative NM. We also developped a method which consists to extract a ligand (in our case the GDP) out of its binding pocket along computed NM. With these two new methods, we showed that a concerted motion of the α subunit would promote the opening of the pocket and the release of the GDP.Secondly, to refine our results, we performed free energy profiles reconstructions along several putative exit pathways of the GDP. Thus, we proposed for the first time a fine-tuned mechanism of GDP exit at the molecular scale and putative key-residues. We proposed also a molecular scale mechanism for the dissociation of the heterotrimeric G-protein through the use of the Targeted Molecular Dynamics (TMD). Finally we were interested in the study of the GPCR:G-protein complex. We performed two studies related to the activation and to the coupling of the macro-complex. We showed that G-protein constrain drastically the GPCR motions. One over-represented motion in the complex that was also retrieved in other crystallized structures of several different GPCRs thus suggested that this motion could be the putative activation motion of a GPCR when complexed to its favorite protein partners.
36

Dynamique structurale et allostérie des récepteurs NMDA / Structural dynamics and allostery of NMDA receptors

Esmenjaud, Jean-Baptiste 16 July 2018 (has links)
Les récepteurs ionotropiques du glutamate sont responsables de la vaste majorité de la neurotransmission excitatrice rapide dans le système nerveux central. Parmi eux, les récepteurs NMDA (rNMDA) sont les médiateurs de la plasticité synaptique, fondement cellulaire des processus d’apprentissage et de mémoire. Leurs dysfonctionnements sont impliqués dans de nombreuses pathologies neurologiques et psychiatriques comme les maladies d’Alzheimer et de Parkinson, l’épilepsie et la schizophrénie. Les rNMDA forment des complexes hétérotétramériques massifs (>500 kDa) dotés de propriétés allostériques uniques grâce à un ensemble de 8 domaines extracellulaires bilobés organisé en deux strates superposées : la couche de domaines N-terminaux (NTD) et la couche de domaines de liaison de l’agoniste (ABD). Malgré un nombre croissant de structures complètes de rNMDA, le mécanisme de transduction permettant aux interactions entre ces domaines de contrôler l’activité du récepteur restait inconnu. En combinant analyse expérimentale et computationnelle, nous montrons qu’un mouvement de roulis à l’interface entre les deux dimères de la couche d’ABD est un déterminant clé du processus d’activation et de modulation des rNMDA. Cette rotation des deux dimères d’ABD constitue un commutateur conformationnel qui règle l’ouverture du canal en fonction de la conformation des NTD situés à l’opposé. Ce travail révèle comment des changements conformationnels concertés entre couches de domaines gouvernent l’activité des rNMDA. Il illumine notre compréhension d’un récepteur synaptique majeur du système nerveux central et ouvre la voie à la conception de nouveaux agents pharmacologiques ciblant le mécanisme allostérique élucidé. / Ionotropic glutamate receptors are responsible for the vast majority of fast excitatory neurotransmission in the central nervous system. Among them, NMDA receptors (NMDARs) are key mediators of synaptic plasticity, which is considered as the cellular basis of learning and memory. NMDAR dysfunction is implicated in numerous neurological and psychiatric brain disorders such as Alzheimer and Parkinson’s disease, epilepsy and schizophrenia. NMDAR form massive hetero tetrameric complexes (>500 kDa) endowed with unique allosteric capacity provided by a cluster of eight extracellular clamshell-like domains arranged as two superimposed layers: the Nterminal domain (NTD) layer and the agonist binding domain (ABD) layer. Despite an increasing number of full-length NMDAR structures, the transduction mechanism by which these domains interact in an intact receptor to control its activity remained poorly understood. Combining experimental and in silico analysis, we identify a rolling motion at an interface between the two constitute dimers in the ABD layer as a key determinant in NMDAR activation and modulation pathways. This rotation of the two ABD dimers acts as a conformational switch that tunes channel opening depending on the conformation of the membrane-distal NTD layer. This work unveils how NMDAR domains move and operate in a concerted manner to transduce conformational changes between layers and command receptor activity. It illuminates our understanding of a major synaptic receptor of the central nervous system and paves the way for the development of new pharmacological tools targeting the elucidated allosteric mechanism.
37

Simulation et analyse modale du transport de chaleur dans les réseaux à dimensionnalité réduite

Gill-Comeau, Maxime 12 1900 (has links)
No description available.
38

Development and Characterization of an Underwater Acoustics Laboratory Via in situ Impedance Boundary Measurements

Vongsawad, Cameron Taylor 20 December 2021 (has links)
Modeling underwater acoustic propagation comes with a variety of challenges due to the need for proper characterization of the environmental conditions. These conditions include ever changing and complex water properties as well as boundary conditions. The BYU underwater acoustics open-air tank test-bed and measurement chain were developed to study underwater acoustic propagation within a controlled environment. It was also developed to provide ways to test and validate ocean models without the high cost associated with obtaining open ocean measurements. However, tank measurements require additional characterization of boundary conditions associated with the walls of the tank which would not be present in an open ocean. The characterization of BYU's underwater acoustic tank included measuring the calibrated impulse response of the tank through frequency deconvolution of sine swept signals in order to determine the frequency dependent reverberation time through reverse Schroeder integration. The reverberation time allows for calculating the frequency dependent spatially averaged acoustic absorption coefficient of the tank enclosure boundaries. The methods used for this study, common to room acoustics, also yield insights into the Schroeder frequency limit of the tank as well as validate models used for quantifying the speed of sound in the tank. The acoustic characterization was validated alongside predicted values and also applied to a tank lined with anechoic panels in order to improve the potential for modeling the tank as a scaled open ocean environment. An initial investigation into effective tank models evaluated the idealized rigid-wall and pressure-release water-air boundary model, a finite-impedance boundary model applying the measured acoustic boundary absorption and a benchmark open ocean model known as ORCA in order to determine potential tank model candidates. This study demonstrates the efficacy of the methodology for underwater acoustic tank characterization, provides a frequency dependent acoustic boundary evaluation from 5-500 kHz, and provides an initial comparison of tank models with applied characterization.
39

Transport elektrického náboje v tantalovém kondenzátoru / Transport of Electric Charge in Tantalum Capacitor

Pelčák, Jaromír January 2012 (has links)
The task of the thesis was studding of tantalum capacitors with solid electrolytes properties. Ta – Ta2O5 – MnO2 capacitor by its construction represents MIS structure, where tantalum anode has metal conductivity and MnO2 cathode is semiconductor. Isolation layer consists of tantalum pentoxide Ta2O5 with relative permitivity r = 27. Dielectric thickness is typically in range from 30 to 150nm. The capacitor charge is not only stored and accumulated on electrodes but also in localised states (oxide vacancies) in isolation layer. The capacitor connected in normal mode represents MIS structure polarized in reveres direction when the applied voltage higher potential barrier between semiconductor - MnO2 cathode and isolation of Ta2O5. The transport of charge carriers via isolation layer is determined by Poole-Frenkel mechanisms and tunnelling. Poole-Frenkel mechanism of charge transport is dominant in low intensity of electric field. Tunnelling determines current at higher electric field intensity. During low intensity of electric field ohmic component is also presented which is determined by volume of resistance of impurities in isolation layer due to donor states of oxygen vacancies. Based on the modelling of measured VA characteristics is possible to estimate determine dielectric thickness of Ta2O5 and determine share of Poole-Frenkelov and tunnel current and charge transportation. The thesis is described charge transport and charge concentration on tantalum capacitor in low frequency area and analysis of capacitor behaviour at frequency band. The first impulse for the thesis was an effort to create equivalent circuit diagram of tantalum capacitor in respect of its physical and electrical behaviour. There is an opportunity to study and determine electric charge transport and its accumulation based on the equivalent circuit diagram structure. There is also a chance to define and trace potential barriers and charge distribution in the capacitor structure based on an measurement and carried out experiments. This methodology and analysis consists of electrical characteristic determination to create physical model of the capacitor describing it function, properties and behaviour.
40

Predicting biomolecular function from 3D dynamics : sequence-sensitive coarse-grained elastic network model coupled to machine learning

Mailhot, Olivier 08 1900 (has links)
La dynamique structurelle des biomolécules est intimement liée à leur fonction, mais très coûteuse à étudier expériementalement. Pour cette raison, de nombreuses méthodologies computationnelles ont été développées afin de simuler la dynamique structurelle biomoléculaire. Toutefois, lorsque l'on s'intéresse à la modélisation des effects de milliers de mutations, les méthodes de simulations classiques comme la dynamique moléculaire, que ce soit à l'échelle atomique ou gros-grain, sont trop coûteuses pour la majorité des applications. D'autre part, les méthodes d'analyse de modes normaux de modèles de réseaux élastiques gros-grain (ENM pour "elastic network model") sont très rapides et procurent des solutions analytiques comprenant toutes les échelles de temps. Par contre, la majorité des ENMs considèrent seulement la géométrie du squelette biomoléculaire, ce qui en fait de mauvais choix pour étudier les effets de mutations qui ne changeraient pas cette géométrie. Le "Elastic Network Contact Model" (ENCoM) est le premier ENM sensible à la séquence de la biomolécule à l'étude, ce qui rend possible son utilisation pour l'exploration efficace d'espaces conformationnels complets de variants de séquence. La présente thèse introduit le pipeline computationel ENCoM-DynaSig-ML, qui réduit les espaces conformationnels prédits par ENCoM à des Signatures Dynamiques qui sont ensuite utilisées pour entraîner des modèles d'apprentissage machine simples. ENCoM-DynaSig-ML est capable de prédire la fonction de variants de séquence avec une précision significative, est complémentaire à toutes les méthodes existantes, et peut générer de nouvelles hypothèses à propos des éléments importants de dynamique structurelle pour une fonction moléculaire donnée. Nous présentons trois exemples d'étude de relations séquence-dynamique-fonction: la maturation des microARN, le potentiel d'activation de ligands du récepteur mu-opioïde et l'efficacité enzymatique de l'enzyme VIM-2 lactamase. Cette application novatrice de l'analyse des modes normaux est rapide, demandant seulement quelques secondes de temps de calcul par variant de séquence, et est généralisable à toute biomolécule pour laquelle des données expérimentale de mutagénèse sont disponibles. / The dynamics of biomolecules are intimately tied to their functions but experimentally elusive, making their computational study attractive. When modelling the effects of thousands of mutations, time-stepping methods such as classical or enhanced sampling molecular dynamics are too costly for most applications. On the other hand, normal mode analysis of coarse-grained elastic network models (ENMs) provides fast analytical dynamics spanning all timescales. However, the vast majority of ENMs consider backbone geometry alone, making them a poor choice to study point mutations which do not affect the equilibrium structure. The Elastic Network Contact Model (ENCoM) is the first sequence-sensitive ENM, enabling its use for the efficient exploration of full conformational spaces from sequence variants. The present work introduces the ENCoM-DynaSig-ML computational pipeline, in which the ENCoM conformational spaces are reduced to Dynamical Signatures and coupled to simple machine learning algorithms. ENCoM-DynaSig-ML predicts the function of sequence variants with significant accuracy, is complementary to all existing methods, and can generate new hypotheses about which dynamical features are important for the studied biomolecule's function. Examples given are the maturation efficiency of microRNA variants, the activation potential of mu-opioid receptor ligands and the effect of point mutations on VIM-2 lactamase's enzymatic efficiency. This novel application of normal mode analysis is very fast, taking a few seconds CPU time per variant, and is generalizable to any biomolecule on which experimental mutagenesis data exist.

Page generated in 0.1269 seconds