Spelling suggestions: "subject:"novapoint"" "subject:"joinpoint""
1 |
Jämförelse av beräkningsprogrammen Novapoint Geosuite Stability och Geoslope SLOPE/W med avseende på släntstabilitet / Comparison of the Calculation Programs Novapoint Geosuite Stability and Geoslope SLOPE/W with Regards to Slope StabilityHagerfors, Jonas January 2019 (has links)
This thesis deals with the difference between two calculation programs for slope stability, namely Geoslope SLOPE/W and Novapoint GeoSuite Stability. The purpose of the thesis is to compare the two calculation programs with regard to the analysis of slope stability, as well as the two programs' handling of data. The two calculation programs use different Limit equilibrium methods to calculate safety factor and sliding surfaces for slopes. It can be expected that the result should be similar to one another, as well as the fact that both the calculation programs use different Limit equilibrium methods, but also when large differences in both safety factor and critical sliding surface give unreliable results. The thesis will also address the factors that may lie behind the fact that a possible stability failure should take place in a slope, as it gives an increased understanding of the analyzes that have been done. The work was carried out by modeling slopes with identical geometric relationships and identical material properties in the two calculation programs, a safety factor and a critical sliding surface for the slopes were developed for both programs and then compared with each other. / Föreliggande examensarbete behandlar skillnaden mellan två beräkningsprogram när det kommer till släntstabilitet, nämligen Geoslope SLOPE/W och Novapoint GeoSuite Stability. Syftet med examensarbetet är att jämföra de båda beräkningsprogrammen avseende vid undersökning av släntstabilitet, samt de två programmens hantering av data. De två beräkningsprogrammen använder sig av liknande Limit equilibrium-metoder för att beräkna säkerhetsfaktor samt glidytor för slänter. Man kan förvänta sig att resultatet bör vara varandra likt då dels att de både beräkningsprogrammen använder sig av liknande Limit equilibrium-metoder, men också då stora skillnader i både säkerhetsfaktor och kritisk glidyta ger opålitligt resultat. Examensarbetet kommer även ta upp de faktorer som kan ligga bakom att ett eventuellt brott ska ske i en slänt, då det ger ökad förståelse för de analyser som gjorts. Arbetet utfördes genom att slänter med identiska geometriska relationer samt identiska materialegenskaper modellerades i de båda beräkningsprogrammen, en säkerhetsfaktor samt kritisk glidyta för slänterna togs fram för båda programmen och jämfördes sedan med varandra.
|
2 |
Statushantering i Virtual Map med ledningssamordning i BIM / Status Management in Virtual Map with Pipe Coordination in BIMGenchel, Jonas January 2010 (has links)
For many years, the construction industry in Sweden has not developed much of an integral approach for design across disciplines. The sector’s impact on society, economics and environment is huge. To make the interactions within the construction industry more efficient, a relatively new concept called BIM (Building Information Modeling) has been introduced. The idea with BIM is that the different actors of the construction industry will work through intelligent CAD software, with common file formats and more cooperation between different actors during the various steps of the building and construction process. The technical consultancy company WSP Sweden is working actively to implement BIM within the frame of its activities. One step towards BIM is the use of their visualization software Novapoint Virtual Map in a better way. They lack a good system to show which pipes belongs to different documents, i.e. some kind of status management. Another step towards BIM is to be able to change and revise Water and Sewage 3D-models with HVAC 3D-models, and to be able to detect possible errors in the connection nodes early in the designing stage. In this thesis work, a CAD-model has been created in Novapoint VA, the CAD software used to design pipe and sewage systems at WSP. The designed model is divided into many stages which creates many parallel documents at the same time. The model is visualized in Novapoint Virtual Map where functions for status management are created. With the help of grouping functions in the software it is possible to show pipes that belong to different documents at the same time. The more documents there are in the same model the longer it takes to create the model, which is something that could be improved in later editions of the software. In this paper, seven tests were carried on to examine how water and sewage pipes CAD-models created in Novapoint VA can be jointly revised with HVAC CAD-models created in MagiCAD. The result of the test shows that four of these tests can be used to revise the models. To use one of these methods, according to the BIM model, for changes and revisions of models can help avoid mistakes in connection points already at design stage.
|
3 |
Building 3D models from geotechnical dataAzaronak, Natallia January 2015 (has links)
Building Information Modelling (BIM) and Virtual Reality (VR) are two of the main directions in the BIM-strategy of the Swedish Transport Administration. Starting from the year 2015 it is a requirement to use BIM even in tenders. In order to meet these requirements WSP developed their own product Open VR - a data platform for visualization, communication, planning, designing as well as a tool for documentation of new and existing environments. Geotechnical analysis is an important part in most of the projects and affects the economy, the projects timeframes and further projects design greatly. Availability of good quality basic data is a requirement to succeed in a project. Inaccurate and late delivered rock and soil 3D models cause the problems at the design stage. A completely or partially automated process for creating 3D soil models using geotechnical database and models presentation in Open VR would provide both economic benefits and reduce the amount of repetitive work in the CAD environment. One of the biggest issues is to combine data coming from different sources and therefore clear standards on how different fields of technology should prepare their information are needed. The goal of this master thesis is to develop a guideline how to prepare geotechnical objects for Open-VR. Firstly software that could be used for preparing geotechnical data for Open VR were identified and described. Three products were chosen: NovaPoint, Civil3D, Power Civil. After that data were processed using the software chosen for comparison. Geotechnical objects (3D models of soil layers and 3D boreholes) were prepared for Open VR using these three products. The results were evaluated. Finally a guideline for preparing geotechnical data for Open VR was written. This guideline can be used not only for preparing the geotechnical data for Open VR but for any other product which can be used for the model coordination (for example, NavisWorks etc). This guideline can be used in any geotechnical project where geotechnical data of Swedish standard are used. This guideline can be used as it is in order to create 3D models of soil layers and rock surfaces with help of Civil3D. In case that another kind of software should be used, this guideline can be used as a basis, because the workflow is the same, but some correction can be done concerning what “button should be pressed”. Recommendations were given depending on the project requirements and application area. Taking into account that WSP decided to not continue with NovaPoint and use Civil 3D and Power Civil instead, then it is recommended to use Civil 3D when it is necessary to create soil layers using field investigations. Results of 3D modelling can be used in NovaPoint, loaded to Open VR and, if necessary, even be imported into Power Civil. Power Civil can be used in large-scale projects where advanced 3D modelling is required or when all other area of technology use Power Civil for project design. Even though NovaPoint does not have priority at WSP it should not be out of the game, it can be very useful in projects where the usage of BIM is a requirement. Considering that NovaPoint has good communication with GeoSuite and can produce smart 3D models it is recommended to have a license of NovaPoint at WSP in order being able to follow software development.
|
Page generated in 0.0213 seconds