• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le contrôle de la traduction des ARN par la protéine NSP3 de rotavirus à l’épreuve d’un essai de traduction in vivo / Control of RNA translation by protein NSP3 of rotavirus challenged by an in vivo translation assay

Gratia, Matthieu 29 September 2014 (has links)
La protéine de rotavirus NSP3 est impliquée dans l’inhibition de la traduction des ARNm cellulaires polyadénylés et dans la stimulation la traduction des ARNm viraux lors de l’infection par le rotavirus. Ces deux fonctions de NSP3 ont été établies principalement par des essais in vitro et ont été en partie contestées par des expériences utilisant des siRNA sur des cellules infectées. L'objectif de mon travail de thèse a été de mettre au point un essai de traduction in vivo permettant de quantifier l’effet de NSP3 sur la traduction des ARNm viraux et des ARNm cellulaires. Plus particulièrement, nous avons voulu évaluer la part de la circularisation des ARNm (“close loop” : modèle d’initiation de la traduction eucaryote) et de la simple protection de l’ARN sur l‘expression des gènes viraux. Des essais de transfection d’ARN rapporteurs polyadénylés en cellules infectées par le rotavirus m’ont permis de montrer que l’infection par le rotavirus inhibe bien la traduction des ARNm cellulaires mais que la force de cette inhibition est dépendante de la souche de rotavirus utilisée. Parallèlement, j’ai pu montrer que l’infection par le rotavirus stimule bien la traduction d’ARN rapporteurs se finissant par GACC (pseudoviraux) et que l’expression de NSP3 seule est suffisante pour obtenir cette stimulation. La surexpression de NSP3 sauvage ou mutée suivie d’électroporations d’ARN rapporteur pseudoviraux dans des cellules BSR m’ont permis de montrer qu’une petite quantité de NSP3 (difficilement détectables par immunodétection) est suffisante pour induire une bonne stimulation de la traduction. Une analyse par RT-qPCR a permis de montrer que la stabilisation de l’ARN seule ne rend pas compte de la totalité de la stimulation de la traduction des ARNm viraux obtenue avec la protéine NSP3 entière. Par contre, j’ai observé que l’expression de NSP3 (en dehors d’une infection) provoque une augmentation non spécifique de la traduction des ARN quelles que soient leurs extrémités 3’. Ainsi, le blocage de la traduction des ARNm cellulaires au cours de l’infection ne dépend pas uniquement de la protéine NSP3. Enfin, la mise au point de ce système de traduction in vivo m’a permis de montrer que : 1/ seule l’extrémité 3’ GACC permet une forte stimulation de la traduction par NSP3 ; 2/ mis à part des contraintes extrêmes (longueurs très courtes des parties non codantes (UTR)), la traduction dépendante de NSP3 s’effectue correctement quels que soient les UTR sur l’ARN. / The rotavirus protein NSP3 is involved in the translation inhibition of polyadenylated cellular mRNAs and translation stimulation of viral mRNAs. These two functions of NSP3 have been established mainly by in vitro assays, then challenged by experiments using siRNA on cells infected. The objective of my thesis was to develop an in vivo translation assay to quantify the effect of NSP3 on the translation of viral and cellular mRNAs. More specifically, we wanted to assess the role of the circularization of mRNA ("closed loop" model of eukaryotic translation initiation) and the simple protection of the RNA on the expression of viral genes.Transfections of polyadenylated reporters RNA in infected cells showed that rotavirus infection inhibits the translation of cellular mRNAs and that the strength of this inhibition depends on the rotavirus strain used. Meanwhile, I was able to show that rotavirus infection stimulates strongly the translation of reporter RNA with a 3’ end GACC (viral-like) and that the expression of the sole NSP3 is sufficient for this stimulation. Overexpression of wild-type or mutated NSP3s followed by electroporation of viral-like reporter RNA in BSR cells showed that a small amount of NSP3 (hardly detectable by immunodetection) is sufficient to induce a good stimulation of translation. Moreover, quantification of transfected RNA by qRT-PCR showed that stabilization of the RNA does not only account for the totality of the stimulation of viral mRNA translation observed with NSP3wt. On the other hand, expression of NSP3 (without infection) causes a nonspecific increase of RNAs translation whatever their 3' ends. Thus, blocking the translation of cellular mRNAs during infection does not depends on the sole NSP3.Finally, the use of the in vivo translation system allowed me to show that 1/ only a 3' end GACC induces a strong stimulation of translation by NSP3 ; 2/ except for extreme constraints (like very short lengths of noncoding regions), NSP3-dependent translation works fine regardless of the UTR sequence.
2

Diversidade molecular dos genes codificadores das proteínas não-estruturais Nsp2 e protease Papaína-like e da proteína estrutural S1 de amostras brasileiras do Coronavírus aviário / Molecular diversity of Nsp2 and Papain-like protease and S1 structural protein coding genes in Brazilian isolates of Avian coronavirus

Rossa, Giselle Ayres Razera 14 November 2014 (has links)
Coronavírus, incluindo-se o Coronavírus aviário (ACoV), possuem o maior genoma composto por RNA conhecido entre os vírus. Aproximadamente dois terços desse genoma codificam proteínas não estruturais (Nsps), cujas funções parecem estar associadas à replicação e patogênese viral. Até o momento, esses alvos têm sido pouco explorados quanto a sua diversidade em diferentes linhagens de ACoV. O presente estudo teve como objetivo investigar a diversidade dos genes codificadores das proteínas não estruturais Nsp2 e protease Papaína-like (Plpro), utilizando-se linhagens brasileiras de ACoV. Para tanto, 10 linhagens de ACoV, isoladas em ovos embrionados, foram submetidas à RT-PCR direcionada aos genes codificadores de Plpro e Nsp2, seguindo-se o sequenciamento de DNA e a análise filogenética, juntamente com sequências homólogas obtidas no GenBank. Além disso, realizou-se a genotipagem por meio do sequenciamento parcial do gene codificador da proteína de espícula (região S1). Três das amostras virais obtidas e investigadas no presente trabalho apresentaram padrão de segregação discordante para os genes estudados. O isolado CRG I22 agrupou-se com linhagens virais pertencentes ao genótipo Massachusetts para S1 e com o grupamento de ACoVs brasileiros os genes da Nsp2 e Plpro. O isolado CRG I33 agrupou-se com linhagens virais pertencentes ao genótipo brasileiro para s1 e plpro e de maneira divergente para o gene da Nsp2. Para o isolado CRG I38, não foi obtida a genotipagem por s1, entretanto, similarmente ao observado para o isolado CRG I33, esse isolado agrupo-se com linhagens virais brasileiras para o gene plro e de maneira independente para o gene nsp2. As demais linhagens estudadas resultaram na formação de um grupamento especificamente brasileiro de ACoV, para os três genes estudados. Esses achados sugerem a ocorrência de recombinação nessas amostras discrepantes. Quanto às identidades médias entre as sequencias nucleotídicas analisadas, a região de s1 analisada apresentou as menores identidades (73,75% ±16,78), seguido pelo gene plpro (88,06% ±5,7) e do gene nsp2 (92,28% ±4,37), em acordo com a literatura. Assim sendo, os alvos investigados podem constituir ferramentas úteis na epidemiologia molecular do ACoV e na investigação de linhagens recombinantes do vírus. O presente estudo é o primeiro a investigar a diversidade genética de genes codificadores de proteínas não-estruturais em linhagens brasileiras de ACoV. Os resultados aqui apresentados reforçam a existência de um genótipo brasileiro de ACoV, para os 3 genes estudados. Entretanto, discrepâncias pontuais encontradas no padrão genotípico para s1, nsp2 e nsp3 permitem inferir uma diversidade genética maior do que a conhecida até o momento, possivelmente resultante de eventos de recombinação entre ACoVs brasileiros, ACoVs vacinais e outros ainda desconhecidos. Os resultados obtidos auxiliam na compreensão dos padrões e evolução dos ACoVs / Coronaviruses, including Avian coronavirus (ACoV), have the largest known RNA genome. Nearly two thirds of its genome codes for non-structural proteins (Nsps), whose functions appear to be linked to viral replication and pathogenesis. Hitherto these targets have been poorly explored regarding the ACoV lineages diversity. The present study aimed to assess the diversity of non-structural protein 2 (nsp2), papain-like protease (plpro) and spike protein (S1 subunit) coding genes, in Brazilian ACoV strains. To this end, 10 ACoV strains, isolated in embryonated eggs, had its 3rd and 5th passages submitted to RT-PCR targeting nsp2, plpro and s1, followed by DNA sequencing and phylogenetic analysis, herewith homologous sequences obtained from GenBank. Three of the ACoV strains sequenced showed a discordant segregation pattern for target genes. CRG I22 strain clustered with Massachusetts genotipe strains for S1, and with Brazilian cluster for nsp3 and plpro genes. CRG I33 strain, clustered with Brazilian strains for S1 and plpro genes, and was divergent for nsp2 gene. For CRG I38 strain, the S1 sequence was not obtained, however, similarly to what was observed for CRG I33, this strain grouped with the Brazilian lineage for plpro gene and was divergent for nsp2 gene. All the other ACoV here sequenced resulted in a specific Brazilian cluster for the three studied genes. Regarding the mean nucleotide identities measured, s1 gene showed the lowest identity (73.75% ±16.78), followed by plpro gene (88.06% ±5.7) and nsp2 gene (92.28% ±4.37), in accordance with previous reported data. Therefore, the targets of the present study are useful tools for ACoV molecular epidemiology studies and for the survey of recombinant ACoV strains. The presented study is the first one investigating the molecular diversity of non-structural proteins coding genes in Brazilian strains of ACoV. Results achieved herein reinforce the data over the circulation of ACoV Brazilian strains in this country, for the three investigated genes. However, divergences found between S1, nsp2 and plpro genetic patters allow inferring a higher molecular diversity than previously known. It is possible that this divergence is due to recombination events between ACoV from vaccines, Brazilian field strains and others still unknown. These results contribute on the comprehension over genetic patters and evolution of ACoV
3

Diversidade molecular dos genes codificadores das proteínas não-estruturais Nsp2 e protease Papaína-like e da proteína estrutural S1 de amostras brasileiras do Coronavírus aviário / Molecular diversity of Nsp2 and Papain-like protease and S1 structural protein coding genes in Brazilian isolates of Avian coronavirus

Giselle Ayres Razera Rossa 14 November 2014 (has links)
Coronavírus, incluindo-se o Coronavírus aviário (ACoV), possuem o maior genoma composto por RNA conhecido entre os vírus. Aproximadamente dois terços desse genoma codificam proteínas não estruturais (Nsps), cujas funções parecem estar associadas à replicação e patogênese viral. Até o momento, esses alvos têm sido pouco explorados quanto a sua diversidade em diferentes linhagens de ACoV. O presente estudo teve como objetivo investigar a diversidade dos genes codificadores das proteínas não estruturais Nsp2 e protease Papaína-like (Plpro), utilizando-se linhagens brasileiras de ACoV. Para tanto, 10 linhagens de ACoV, isoladas em ovos embrionados, foram submetidas à RT-PCR direcionada aos genes codificadores de Plpro e Nsp2, seguindo-se o sequenciamento de DNA e a análise filogenética, juntamente com sequências homólogas obtidas no GenBank. Além disso, realizou-se a genotipagem por meio do sequenciamento parcial do gene codificador da proteína de espícula (região S1). Três das amostras virais obtidas e investigadas no presente trabalho apresentaram padrão de segregação discordante para os genes estudados. O isolado CRG I22 agrupou-se com linhagens virais pertencentes ao genótipo Massachusetts para S1 e com o grupamento de ACoVs brasileiros os genes da Nsp2 e Plpro. O isolado CRG I33 agrupou-se com linhagens virais pertencentes ao genótipo brasileiro para s1 e plpro e de maneira divergente para o gene da Nsp2. Para o isolado CRG I38, não foi obtida a genotipagem por s1, entretanto, similarmente ao observado para o isolado CRG I33, esse isolado agrupo-se com linhagens virais brasileiras para o gene plro e de maneira independente para o gene nsp2. As demais linhagens estudadas resultaram na formação de um grupamento especificamente brasileiro de ACoV, para os três genes estudados. Esses achados sugerem a ocorrência de recombinação nessas amostras discrepantes. Quanto às identidades médias entre as sequencias nucleotídicas analisadas, a região de s1 analisada apresentou as menores identidades (73,75% ±16,78), seguido pelo gene plpro (88,06% ±5,7) e do gene nsp2 (92,28% ±4,37), em acordo com a literatura. Assim sendo, os alvos investigados podem constituir ferramentas úteis na epidemiologia molecular do ACoV e na investigação de linhagens recombinantes do vírus. O presente estudo é o primeiro a investigar a diversidade genética de genes codificadores de proteínas não-estruturais em linhagens brasileiras de ACoV. Os resultados aqui apresentados reforçam a existência de um genótipo brasileiro de ACoV, para os 3 genes estudados. Entretanto, discrepâncias pontuais encontradas no padrão genotípico para s1, nsp2 e nsp3 permitem inferir uma diversidade genética maior do que a conhecida até o momento, possivelmente resultante de eventos de recombinação entre ACoVs brasileiros, ACoVs vacinais e outros ainda desconhecidos. Os resultados obtidos auxiliam na compreensão dos padrões e evolução dos ACoVs / Coronaviruses, including Avian coronavirus (ACoV), have the largest known RNA genome. Nearly two thirds of its genome codes for non-structural proteins (Nsps), whose functions appear to be linked to viral replication and pathogenesis. Hitherto these targets have been poorly explored regarding the ACoV lineages diversity. The present study aimed to assess the diversity of non-structural protein 2 (nsp2), papain-like protease (plpro) and spike protein (S1 subunit) coding genes, in Brazilian ACoV strains. To this end, 10 ACoV strains, isolated in embryonated eggs, had its 3rd and 5th passages submitted to RT-PCR targeting nsp2, plpro and s1, followed by DNA sequencing and phylogenetic analysis, herewith homologous sequences obtained from GenBank. Three of the ACoV strains sequenced showed a discordant segregation pattern for target genes. CRG I22 strain clustered with Massachusetts genotipe strains for S1, and with Brazilian cluster for nsp3 and plpro genes. CRG I33 strain, clustered with Brazilian strains for S1 and plpro genes, and was divergent for nsp2 gene. For CRG I38 strain, the S1 sequence was not obtained, however, similarly to what was observed for CRG I33, this strain grouped with the Brazilian lineage for plpro gene and was divergent for nsp2 gene. All the other ACoV here sequenced resulted in a specific Brazilian cluster for the three studied genes. Regarding the mean nucleotide identities measured, s1 gene showed the lowest identity (73.75% ±16.78), followed by plpro gene (88.06% ±5.7) and nsp2 gene (92.28% ±4.37), in accordance with previous reported data. Therefore, the targets of the present study are useful tools for ACoV molecular epidemiology studies and for the survey of recombinant ACoV strains. The presented study is the first one investigating the molecular diversity of non-structural proteins coding genes in Brazilian strains of ACoV. Results achieved herein reinforce the data over the circulation of ACoV Brazilian strains in this country, for the three investigated genes. However, divergences found between S1, nsp2 and plpro genetic patters allow inferring a higher molecular diversity than previously known. It is possible that this divergence is due to recombination events between ACoV from vaccines, Brazilian field strains and others still unknown. These results contribute on the comprehension over genetic patters and evolution of ACoV
4

Caractérisation de l'implication de l'hélicase DHX9 (RHA) dans le cycle de multiplication du virus Chikungunya / Characterization of the involvement of the helicase DHX9 (RHA) in the multiplication cycle of the Chikungunya virus

Matkovic, Roy 20 September 2016 (has links)
Les virus sont des parasites intracellulaires obligatoires recrutant des cofacteurs cellulaires afin de détourner les différents processus biologiques leur permettant notamment de répliquer leur génome et de former d'autres particules virales. Si des cofacteurs cellulaires de la réplication du virus Semliki Forest ont été récemment identifiés, très peu d'études ont permis de révéler des partenaires de la réplication du proche Alphavirus Chikungunya (CHIKV). Nous avons découvert, au cours de cette étude, un recrutement d'Hélicases à domaine DExD/H au niveau de sites de réplication du CHIKV. Parmi elles, DHX9 ou RNA Helicase A (RHA), grâce à ses propriétés de liaison et de modulation de structures des ARNs ou de complexes de Ribonucléoprotéines, est impliquée dans diverses fonctions depuis la transcription, la traduction, la réplication de génomes et jusqu'à la production de particules infectieuses de nombreux virus. Dans le cas du virus Chikungunya, nous avons caractérisé une fonction provirale dans la traduction de protéines non-structurales et une fonction antivirale dans la réplication du génome. Cette double fonction opposée est manipulée par le CHIKV afin d'assurer une production de protéines non-structurales composant le complexe de réplication tout en maintenant sa réplication. Ces travaux révèlent un nouveau mécanisme de régulation de la traduction d'ARN génomique de CHIKV et apportent des éléments de compréhension dans la dynamique de passage du phénomène de traduction à l'étape de réplication du génome CHIKV. / Viruses are obligate intracellular parasites recruiting cellular cofactors to divert different biological processes enabling them to replicate their genome and to form other viral particles. If cellular cofactors of Semliki Forest virus replication have recently been identified, very few studies have revealed the replication partners of the very close Alphavirus Chikungunya (CHIKV). During this study, We have discovered recruitments of several DExD/H Box Helicases at the CHIKV replication sites. Among them, DHX9 or RNA Helicase A (RHA) through its RNA binding properties and in modulating RNA secondary structures or Ribonucleoproteins complexes, is involved in various functions from transcription, translation, replication of genomes and up to production of infectious particles of many viruses. In the case of Chikungunya virus, we have characterized a proviral function in the translation of non-structural proteins and an antiviral function in the genome replication. These opposite functions are manipulated by CHIKV to ensure production nonstructural proteins, components of the CHIKV replication complex while maintaining its replication. These works reveal a new translation regulation mechanism of CHIKV genomic RNA and bring some knowledge on the passage from the translation stage to the replication step of CHIKV genome.
5

Evaluation of Interactions of COVID Nonstructural Proteins 3, 5, and 6 With Human Proteins and Potentially Therapeutic Molecules

Huitsing, Jessica 01 January 2022 (has links)
The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2, or SARS-CoV-2, has been ongoing for over two years. The virus spreads easily and is more unpredictable than well-known viruses like the flu, making it important to have reliable combative measures before we fully drop non-vaccine preventive actions, like mask-wearing.Therefore, we used computational protein modeling to investigate the interactions of three nonstructural proteins (abbreviated Nsp) encoded in the viral RNA genome– Nsp3, Nsp5, and Nsp6 – which are involved in the viral life cycle, with human P-type polyamine transporting ATPases ATP13A2 and ATP13A3, whose disease symptoms when mutated mimic certain COVID-19 complications. Understanding these interactions can help shed light on the mechanism of unexpected symptoms seen in COVID-19 and provide an avenue through which to treat infections. Additionally, papain-like protease (PLpro) and 3-chymotrypsin-like protease (3CLpro), which correspond to Nsp3 and Nsp5, respectively, are highly conserved between SARS-CoV and SARS-CoV-2 and thus make good potential drug targets due to their active sites and presumable lower ability to tolerate mutations (reducing the likelihood of treatments becoming ineffective), although the potential effects on the human proteasome would need to be further investigated. In addition, Nsp6 may help the virus evade host defenses by limiting the ability of autophagosomes to deliver viral particles to lysosomes, so limiting its interactions may increase the ability of the host cell to target its viral invader. One compound in particular, Haloperidol, showed promising results; predicted docking (via computational molecular docking software) to Nsp6 alone, as well as to Nsp6-heteroprotein complexes suggested strong binding, indicating a potential strong interaction that could impact the viral protein function and thus the viral life cycle.

Page generated in 0.0331 seconds