Spelling suggestions: "subject:"buclear cotransport"" "subject:"buclear detransport""
1 |
A Single Molecule Study of Calcium Effect on Nuclear TransportSarma, Ashapurna 12 November 2010 (has links)
No description available.
|
2 |
Interactions of HBV capsid involved in nuclear transport / Etude des interactions de la capside du VHB impliquées dans le transport nucléaireGallucci, Lara 25 October 2018 (has links)
Le virus de l'hépatite B (VHB) est un virus enveloppé composé d'un ADN partiellement double brin (ADNrc) contenu dans une capside icosahédrique. Le VHB est responsable d'infections aiguës et chroniques. VHB est non cytopathique mais l’inflammation chronique entraîne une fibrose hépatique, une cirrhose et un carcinome hépatocellulaire. Le VHB se réplique via un intermédiaire à ARN. La transcription nécessite que l'ADNrc soit convertit en un ADN circulaire clos de manière covalente (ADNccc). Cet ADNccc sert de matrice pour la transcription de l'ARN prégénomique (ARNpg), qui est spécifiquement encapsidé grâce aux interactions entre la polymérase virale, l'ARNpg et la protéine core (Cp) qui forme la capside. La polymérase rétrotranscrit l'ARNpg en ADN monocaténaire puis en ADNrc, conduisant à des matrices de capside matures (MatC). Cp avec 185 aa contient un domaine N-terminal structuré, et un domaine C-terminal (CTD) flexible. Le CTD comprend deux signaux de localisation nucléaire (NLS) et un domaine de liaison avec l’importin β (IBB). Le CTD est orienté vers l'intérieur de la capside de part son interaction avec les acides nucléiques simples brins tandis qu'il est exposé vers l'extérieur dans les capsides vides (EmpC) et les MatC. De plus Cp étant surexprimée, cela conduit à l'assemblage des EmpC. Le VHB doit délivrer son génome dans le noyau des cellules infectées pour sa réplication. Le transport nucléaire est médié par la capside qui interagit avec les récepteurs d'import. L’équipe a démontré préalablement que ce transport a besoin des récepteurs Importin α (Imp.α) et Importin β (Imp.β) en induisant le transport des capsides au panier nucléaire où elle est stoppée par l'interaction avec la nucléoporine 153 (Nup153). Nous avons démontré que l’Imp.α, mais pas l'Imp.β, se lie aux MatC suggérant que seule la partie du CTD qui contient les NLS est exposée à l’extérieur des MatC. En comparaison, nous avons analysé les EmpC en collaboration avec Adam Zlotnick (Université d'Indiana, États-Unis) et démontré que les EmpC sont capables de lier directement l'Imp.β. Cette interaction qui est plus forte que l’interaction avec l'Imp.α s'effectue via la reconnaissance du domaine IBB du CTD, ce qui implique une exposition totale du CTD à l'extérieur de la capside. Nous avons aussi montré que la liaison avec l'Imp.β à des concentrations très élevées fournit des forces de déstabilisation menant au désassemblage des EmpC. La libération du génome dans le panier nucléaire implique que l’interaction entre les MatC et Nup153 participe au désassemblage de la capside. Afin de valider cette hypothèse, nous avons exposé des MatC dont le génome est radiomarqué avec un fragment de Nup153 contenant le domaine clé, montré pour interagir avec la capside, en présence de nucléases. Nous avons mis en évidence qu'en présence de ce fragment, les MatC restent stables. Cela suggère la nécessité de facteurs cellulaires additionnels pour le désassemblage des MatC. Cette conclusion est conforme avec nos résultats sur noyaux isolés, dans lesquels nous avons observé une localisation nucléaire des capsides laissant supposer que les facteurs cellulaires nécessaires au désassemblage des MatC sont nucléaires. Afin d'étudier plus en détail l'étape de désassemblage et la libération du génome viral, nous avons mis au point un système permettant de suivre en temps réel le devenir du génome viral. / The Hepatitis B Virus (HBV) is an enveloped virus containing a partially double stranded DNA genome (rcDNA). HBV causes acute and chronic infections. HBV is not cytotoxic but chronic inflammation leads to liver fibrosis, cirrhosis and hepatocellular carcinoma. HBV replicates via an RNA intermediate, which is transcribed from a covalently closed circular form of the viral DNA (cccDNA). This pregenomic RNA is specifically encapsidated into the capsid by interaction with the viral polymerase, which also interacts with the core protein (Cp), forming the capsid. The polymerase retrotranscribes the pregenomic RNA into single stranded DNA and subsequently partially double stranded DNA resulting in mature capsids (MatC). Cp is an 185 aa long polypeptide comprising a N-terminal assembly domain, and a flexible C-terminal domain (CTD). The CTD includes two overlapping nuclear localization signals (NLS) of eight aa and an Importin ß Binding Domain (IBB) of 34 aa. The CTD is fixed in the interior of the capsid by interacting with single stranded nucleic acids but translocates to the exterior in MatC and empty capsids (EmpC). Cp is over expressed leading to assembly of EmpC. The virus has to deliver its genome into the nucleus of infected cells for replication. Nuclear transport is mediated by the capsid that interacts with nuclear import receptors. The group has recently shown that MatC need either both, importin (Imp.) and importin ß (Imp.ß), or Imp.ß alone for transport of the capsids into the nuclear basket. In this structure where genome liberation likely occurs, the transport of the capsid is arrested by interaction between the capsid and the nucleoporin Nup153. In the thesis we demonstrate that MatC binds to Imp.α but not Imp.ß, suggesting that only the part of the CTD, which contains the NLSs is exposed on capsids’ surface. In collaboration with the Adam Zlotnick (Indiana University, U.S.A.) we showed that EmpC, in contrast, bind Imp.β directly without Imp.α acting as an adaptor. This interaction, which is stronger than the one of Imp. occurs needs IBB exposure, meaning that the entire CTD becomes externalized. Furthermore, exposure to very high Imp.ß concentration led to EmpC destabilization. The genome release within the nuclear basket implies that Nup153 is involved in genome liberation from MatC. To verify this hypothesis we used MatC with a radioactively labeled genome, which were exposed to the capsid binding-Nup153 fragment. Investigating the accessibility of the genome to nucleases we found that the Nup153 fragment had no impact on capsids stability, suggesting the need of cellular factors driving disassembly. This conclusion is in agreement with our observation that MatC added to isolated nuclei resulted in nuclear capsid entry, which requires disassembly. To further study the disassembly step and the consequent release of the viral genome, we developed a system to directly visualize the viral genome allowing investigations of genome uncoating in real time. The system is based on the cooperative binding of a fluorescent fusion protein between the bacterial protein OR with GFP to a double stranded DNA sequence called Anch. Using this model we showed that infection of OR-GFP-expressing hepatoma cells with HBV containing a modified Anch genome allowed monitoring genome release into the nucleus. In future, this system may help identifying factors involved in genome release and repair and to decipher their molecular interactions.
|
3 |
Mecanismo molecular do tráfego núcleo-citoplasmático de maspina. / Molecular mechanism of maspin nucleocytoplasmic traffic.Garciasalas, Jeffrey Roberto Reina 15 August 2018 (has links)
Maspina (SERPINB5) é um potencial gene supressor de tumor com atividades biológicas pleiotrópicas, incluindo a regulação da proliferação, morte, adesão e migração celular e a expressão gênica e a resposta ao estresse oxidativo. O mecanismo molecular subjacente a sua função é pouco conhecido. Vários estudos sugerem que a localização subcelular de maspina tem um papel essencial na sua função biológica e sua atividade supressora de tumor. A maspina nuclear tem sido associada a um bom prognóstico, enquanto que a sua localização núcleocitoplasmática tem sido correlacionada à progressão tumoral. Portanto, este trabalho teve como objetivo investigar o mecanismo molecular da translocação nuclear de maspina. Assim, identificamos um sinal de localização nuclear (NLS) bipartido na sequência de maspina usando um software de predição de NLS. Deleção do NLS resulta em diminuição dos níveis de maspina nuclear. No entanto, observamos que maspina também é capaz de se difundir ao núcleo em células HeLa permeabilizadas com digitonina. Porém, estudos prévios indicaram que a localização subcelular de maspina é regulada na célula intacta. Assim, para poder distinguir o transporte regulado do passivo, fusionamos a sequência inteira de maspina e do seu NLS a 5GFPs (MaspinFL e 5GFPs-MaspinNLS, respectivamente). Foi observado que o NLS de maspina, mas não a sequência inteira da proteína, foi capaz de translocar a proteína quimérica ao núcleo, o que sugere que a disponibilidade do NLS de maspina pode ser regulada na sua estrutura nativa. Além disso, foi observado que a translocação nuclear de 5GFPs-MaspinNLS foi inibida pela co-transfecção com mutantes de Ran-GTPase, indicando que o processo depende de Ran-GTPase e portanto ocorre ativamente. Não observamos uma interação do NLS de maspina com carioferina alfa 2 (KPNA2) nem uma inibição do transporte nuclear de maspina ao tratar células com importazole, um inibidor da via clássica, o que sugere que maspina transloca para o núcleo de uma forma não convencional. / Maspin (SERPINB5) is a potential tumor suppressor gene with pleiotropic biological activities, including regulation of cell proliferation, death, adhesion, migration, gene expression and oxidative stress response. The molecular mechanism underlying maspin function is poorly understood. Several studies suggest that subcellular localization plays an essential role on maspin biological function and tumor suppression activity. Nuclear maspin has been associated with a good prognostic, whereas nucleocytoplasmic localization correlates with tumor progression. The objective of this project was to investigate the mechanism underlying maspin nuclear translocation. We identified a bipartite Nuclear Localization Signal (NLS) in maspin protein sequence using an NLS prediction software. Deletion of maspin NLS leads to decrease in maspin nuclear levels. However, we also observed that maspin diffuses into the nucleus of digitoninpermeabilized cells. Still, previous studies indicated that maspin subcellular localization is regulated in the intact cell. Considering this, in order to distinguish between regulated and passive nuclear transport, maspin NLS sequence and full-length protein sequence were fused to 5GFPs (5GFPs-MaspinNLS and MaspinFL, respectively). We observed that MaspinNLS, but not MaspinFL, was able to drive 5GFPs nuclear translocation, suggesting that the availability of maspin NLS may be regulated in the native maspin structure. Furthermore, 5GFPs-MaspinNLS nuclear translocation was abrogated by mutant Ran-GTPase co-transfection, indicating that this process depends on Ran-GTPase and it occurs actively. An interaction between Maspin NLS and karyopherin alpha 2 (KPNA2) was not detected neither an inhibition of maspin nuclear transport when cells were treated with importazole, an inhibitor of the classic nuclear import pathway. These data suggest that maspin may be translocating to the nucleus in a nonconventional manner.
|
4 |
Charakterisierung eines ribosomenassoziierten Proteinkomplexes der Hefe Saccharomyces cerevisiaeBerlin 09 November 2001 (has links) (PDF)
No description available.
|
5 |
Sumoylation of Nuclear Transport Receptors and the small GTPase RanSakin, Volkan 22 October 2012 (has links)
No description available.
|
6 |
A nuclear export sequence in Nup214 promotes its targeting to the nuclear pore complexHamed, Mohamed 20 May 2020 (has links)
No description available.
|
7 |
Huntingtin Nuclear Localization: Current Insights into Mechanism and RegulationDesmond, Carly R. 04 1900 (has links)
<p>Huntington's Disease brains display a striking accumulation of huntingtin in the nucleus of striatal and cortical neurons, suggesting that nuclear functions may be key to the onset of cellular pathogenesis. Entry to the nucleus is tightly regulated by a family of import receptors called karyopherins that limit their binding to proteins bearing specific nuclear localization signals (NLS). Although huntingtin is primarily cytoplasmic in healthy neurons, it is also found in the nucleus at low levels and contains a nuclear export signal (NES), suggesting that shuttling to and from the nucleus is part of the protein's normal function. Indeed, recent publications from our lab (Atwal <em>et al.</em> 2007 and 2011, and Munsie <em>et al</em>. 2011) describe huntingtin's ability to enter the nucleus in response to cell stress, and localize to cofilin-actin rods. We have identified an active NLS near the amino terminus of huntingtin between amino acids 174-207, which is recognized by both karyopherin β2 and β1. While functional in ST<em>Hdh </em>and NIH 3T3 cells, the huntingtin NLS lacks activity in HEK 293 and MCF-7 cell lines. This surprising observation suggests that additional levels of regulation exist amongst cell types. We have isolated a shorter sequence within the NLS that localizes to membrane structures throughout the cell (such as the plasma membrane and vesicles). This thesis explores several putative secondary regulatory mechanisms, such as, nuclear export activity, transcriptional dependence, palmitoylation and acetylation. However, the most promising mechanism thus far is masking of the NLS by HAP1 and HMGB1. The functions of these proteins, in vesicular trafficking and autophagy/apoptosis, respectively, may offer further insight into huntingtin’s nuclear function. By understanding the underlying regulatory mechanisms of huntingtin nuclear import, we hope to gain further insight into why huntingtin accumulates in the nucleus of specific neurons in HD, and whether or not this mislocalization directly contributes to disease.</p> / Doctor of Philosophy (PhD)
|
8 |
Molecular insights into the biological role / mechanisms of GATA-4 and FOG-2 in normal cardiac function and in cardiac hypertrophy.Philips, Alana Sara, Clinical School - St George Hospital, Faculty of Medicine, UNSW January 2007 (has links)
The regulation of cardiac-specific genes such as GATA-4 and its co-factor FOG-2 is paramount for normal heart development and function. Indeed, those mechanisms that regulate GATA-4 and FOG-2 function, such as nuclear transport and the post-translational modification of SUMOylation, are of critical importance for cardiogenesis. Therefore the aims of this study were to: i) elucidate the nuclear transport mechanisms of GATA-4; ii) determine the function of SUMOylation on the biological activity of both GATA-4 and FOG-2; and iii) examine how these mechanisms impact on the role of GATA-4 and FOG-2 in cardiac hypertrophy. Firstly, we characterised a non-classical nuclear localisation signal that mediates active import of GATA-4 in both HeLa cells and cardiac myocytes. Fine mapping studies revealed four crucial residues within this region that interacted with importin ?? to mediate GATA-4 import via the non-classical import pathway. In addition, a cardiac myocyte-specific CRM1-dependent nuclear export signal, which consists of three essential leucine residues, was identified. We also investigated the residues of GATA-4 that are responsible for its DNAbinding activity and therefore transcriptional control of cardiac-specific genes. Secondly, we demonstrated that SUMOylation of both GATA-4 and FOG-2 is exclusively carried out by SUMO-2/3. Moreover, SUMOylation is involved in the nuclear localisation of both GATA-4 and FOG-2 in cardiac myocytes as well as the transcriptional regulation of cardiac-specific genes, such as cardiac troponin I. Finally, and perhaps most biologically significant, we showed that nuclear transport as well as SUMOylation of GATA-4 is imperative for the ability of GATA-4 to induce cardiac hypertrophy. Moreover, it was determined that FOG-2 SUMOylation is involved in the ability of FOG-2 to protect against cardiac hypertrophy. In conclusion, the current study provides detailed information on the nuclear transport pathways of GATA-4 as well as the SUMOylation of both GATA-4 and FOG-2 and the role these two mechanisms play in gene transcription and cardiac hypertrophy.
|
9 |
Studies towards a general method for attachment of a nuclear import signal. Stabilization of the m<sub>3</sub>G-Cap.Lindvall, Mattias January 2010 (has links)
<p>A synthetic pathway towards the cap-structure of 2,2,7-trimethylguanosine containing a methylene modified triphosphate bridge have been investigated. The modification to the triphosphate bridge is hoped to slow down cap degradation and give the connected oligunucleotide an increased lifetime. This could result in an better understanding of nuclear transport of oligonucleotides and could thereby helping to develop new treatments for different diseases. The synthesis relies on a coupling reaction between the 2,2,7-trimethylguanosine 5’phosphate and 2’-<em>O</em>-methyladenosine with a 5’-pyrophosphate where the central oxygen has been replaced by a methylene group. The reaction pathway consists of 9 steps of which 8 steps have been successfully performed. The last step, which includes a coupling reaction, was attempted but without successful identification and isolation of the cap-structure, and will need further attention. The reaction has been performed in a milligram scale with various yields.</p> / Presentation utförd
|
10 |
Studies on the DEAD-box RNA-helicase Dbp5 and the ABC-protein Rli1 in translation termination and identification of a novel function of Dbp5 in ribosomal transportNeumann, Bettina 20 April 2015 (has links)
No description available.
|
Page generated in 0.0438 seconds