• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Centromeres, polyploidy and chromosome pairing

Martinez Perez, Enrique January 2001 (has links)
No description available.
2

Characterisation of endogenous KRAB zinc finger proteins

Crawford, Catherine January 2009 (has links)
The Krüppel-associated box (KRAB) zinc finger protein (ZFP) genes comprise one of the largest gene families in the mammalian genome, encoding transcription factors with an N-terminal KRAB domain and C-terminal zinc fingers. The KRAB domain interacts with a co-repressor protein, KAP-1, which can recruit various factors causing transcriptional repression of genes to which KRAB ZFPs bind. Little is currently known about the gene targets of the ~400 human and mouse KRAB ZFPs. Many KRAB ZFPs interact with factors other than KAP-1. To identify proteins that may interact with one particular KRAB ZFP, Zfp647, I previously carried out a yeast two-hybrid screen using the full-length Zfp647 sequence and a mouse embryonic cDNA library. I have now tested the interactions from this screen for their specificity for Zfp647. I show that Zfp647 can interact with itself and at least 20 other KRAB ZFPs through their zinc finger domains, and have confirmed the Zfp647 self-interaction by in vitro co-immunoprecipitation. In my yeast two-hybrid screen, Zfp647 bound to KAP-1 as well as another related protein, ARD1/Trim23. Zfp647 also interacts with proteins that function in ubiquitylation. I have found evidence to suggest that Zfp647 may also interact with proteins encoding jumonji domains both by yeast two-hybrid assay and by co-immunoprecipitation from NIH/3T3 cell extracts. We have previously found that Zfp647 localises to non-heterochromatic nuclear foci in differentiated ES cells, which also contain KAP-1 and HP1, and which lie adjacent to PML nuclear bodies in a high proportion of cells. I have found that these foci are also visible in pMEFs, but not NIH/3T3 tissue culture cells. Immunofluorescence studies with antibodies against proteins from the yeast twohybrid screen have not shown any significant co-localisation with Zfp647. KAP-1 is sumoylated ex vivo, as are two human KRAB ZFPs. Because Zfp647 lies adjacent to PML nuclear bodies and can associate with proteins involved in posttranslational modification, I tested whether Zfp647 is also modified. I characterised a sheep _-Zfp647 antibody previously created in the lab and have shown that it detects Zfp647 by western blot, but not by immunofluorescence. I show that treatment of NIH/3T3 cells with NEM, which prevents the removal of protein modifications, leads to the appearance of higher molecular weight forms of Zfp647. Modification of Zfp647 is not dependent on KAP-1, which is known to function as a SUMO E3 ligase. Attempts to classify the modification as either ubiquitin, SUMO or NEDD8 have suggested that Zfp647 may be mono-ubquitylated. The larger modified forms of Zfp647 are present in both NIH/3T3 and ES cells. Interestingly, I found that the modification profile of the protein changes over the course of ES cell differentiation, during which time Zfp647 relocalises to punctate nuclear foci; thus Zfp647 modification may be involved in this process.
3

Nuclear architecture in differentiating embryonic stem cells

Kleinert, Fanni January 2015 (has links)
Gene expression is regulated at various levels, such as transcription, RNA transport and translation. Additionally, it has been shown that chromatin structure, location and dynamics also have an important role in gene expression control. While active gene regions are strongly associated with an open chromatin structure at the surface of the chromosome territory (CT) and a location in the nuclear interior, inactive gene regions seem to be related with a closed structure within the CT and a position at the nuclear periphery. However, it is still unclear how these features are regulated. Importantly, malfunction of gene regulation can impact on health and longevity. Therefore, the aim of this project was to investigate the correlation of gene expression and chromatin organisation both in single gene loci and the MHC gene cluster. The MHC locus has the highest gene density in mammalian cells and contains genes that can be reprogrammed by pro-inflammatory cytokines. The original goal of this project was to label the MHC locus by the Lac operator/repressor (LacO/LacI) approach in order to study chromatin dynamics in living cells using labelled CTs as reference for genome mobility. The thymidine analogue EdU, that can be used to label CTs, was analysed for its effects on cell cycle progression and survival, and revealed to have a strong negative impact on the cells' well-being. In the end, the LacO/LacI-recognition system for live-cell imaging did not succeed, thus FISH analyses were carried out to study chromatin dynamics in snap-shots. The location and structure of the hybridised gene regions were analysed in response to gene activation and inactivation during ESC differentiation to neuroepithelial progenitors (NPs). Single-gene focused experiments were performed using the cell line specific genes, Oct4 and Sox1, together with Gapdh as a housekeeping gene. Even though, the results showed less changes between the days of differentiation on the Gapdh locus, the gene expression profiles for the cell line specific genes did not match with the hypothesised chromatin organisation (see above). However, investigations on the gene-dense MHC locus showed structural chromatin changes that correlated with the activation of genes in this region. Interestingly, ESC treated with TNFalpha were unable to activate NF-kappaB signalling, probably due to the lack of a functional IKK complex. In summary, this project was focussing on the regulation of gene expression by the chromatin architecture and revealed complex chromatin dynamics that are likely to be affected by the sum of genes in a genome region, rather than a single gene.
4

The role of elements binding CTCF and cohesin in directing tissue-specific enhancer activity

Hanssen, Lars January 2016 (has links)
Distal enhancer elements regulate the tissue-specific expression of their target genes via the establishment of physical interactions with the gene promoter. In mice, a cluster of five enhancers, jointly classified as a super-enhancer, specifically upregulate α-globin gene expression during erythroid differentiation. Aside from the Nprl3 gene, whose promoter is located inside this enhancer region, expression-levels of other genes within a short distance (&lt,50kb) of the enhancer region are not affected by the activation of the enhancer in erythroid cells, despite being located within the same sub-TAD in erythroid cells. The CCCTC-binding factor (CTCF) is implicated in the organisation of chromosome topology through the formation of interactions between its binding sites in an orientation-dependent manner. In this thesis, I demonstrate that CTCF functions in vivo as a boundary to maintain α-globin enhancer-promoter specificity in erythroid cells. The study of the local chromatin architecture by next-generation Capture-C reveals that α-globin enhancer and promoter interactions are constrained to a compartment of roughly 70kb. The unidirectional interaction profiles of the α-globin enhancers are delimited by the interactions between two genomic domains flanking the α-globin cluster. Further investigation shows that each of these domains contains several CTCF binding sites orientated in tandem, such that CTCF binding orientation between domains is convergent. Although CTCF binding across the α-globin locus is identical between mouse embryonic stem (ES) cells and erythroid cells, interaction between these domains occurs only in erythroid cells suggesting it is dependent on the formation of tissue-specific α-globin enhancer-promoter interactions. By generating a series of mouse models, deleting CTCF binding sites at the α-globin enhancers singly and in combination, I show that the deletion of two CTCF binding sites directly flanking the enhancer cluster results in a shift in interactions between flanking domains, away from the enhancer region. This leads to an expansion of enhancer interactions to include two genes directly upstream of the α-globin enhancers: Rhbdf1 and Mpg. Despite the Rhbdf1 gene being subject to polycomb group protein-mediated gene repression in erythroid cells, ablation of CTCF binding results in increased interactions between both the Rhbdf1 and Mpg gene promoters and the α-globin enhancers and concurrent strong transcriptional upregulation of both genes. The Rhbdf1 gene promoter acquires the active histone mark H3K4me3, but doesn't lose Polycomb Repressive Complex 2 (PRC2) mark H3K27me3 or binding of its catalytic component Ezh2. Despite the presence of this repressive mark, robust levels of Rhbdf1 expression are detected at levels higher than those in ES cells where this gene is actively expressed under the influence of its own enhancer. I conclude that regulation of the direction of enhancer interactions by CTCF is required for the promoter specificity of enhancers and the maintenance of transcriptional states of nearby genes.
5

The genomic health of human pluripotent stem cells

Henry, Marianne Patricia January 2018 (has links)
Human pluripotent stem cells are increasingly used for cell-based regenerative therapies worldwide, with the use of embryonic and induced pluripotent stem cells as potential treatments for a range of debilitating and chronic conditions. However, with the level of chromosomal aneuploidies the cells may generate in culture, their safety for therapeutic use could be in question. This study aimed to develop sensitive and high-throughput assays for the detection and quantification of human pluripotent stem cell aneuploidies, to assess any changes in their positioning in nuclei, as well as investigate the possible roles of lamins in the accumulation of aneuploidies. Using Droplet Digital PCR™, we optimised the detection of aneuploid cells in a predominantly diploid background. An assay was established for the sensitive detection of up to 1% of mosaicism and was used for the monitoring of low-level chromosome copy number changes across different cell lines, conditions and passages in the human pluripotent stem cells. In addition, fluorescence in-situ hybridisation was used to map genes ALB and AMELX on chromosomes 4 and X, respectively, in karyotype-stable chromosome X aneuploid lymphoblastoid cell lines. Our results demonstrated significant alternations in the gene loci positioning in the chromosome X aneuploid cell lines. Using the same established method, the positioning of ALB and AMELX was monitored, alongside the genomic instability with ddPCR™, in the different human pluripotent stem cell lines, conditions and passage. We demonstrated a highly plastic nuclear organisation in the pluripotent stem cells with many changes occurring within a single passage. Furthermore, these results were not exclusive to a single cell line or condition, regardless of the presence or absence of feeder cells and of passage number, and the flexibility of the chromatin organisation remained throughout the duration of the study. We demonstrated high levels of genomic instability with recurrent gains and losses in the AMELX copy number in the human embryonic stem cells during the course of our study, however no significant changes in their gene loci positioning from these abnormalities were observed. xvi | P a g e Additionally, we observed reduced levels of lamin B2 in the aneuploid lymphoblastoid cell lines and complete loss in some hPSC samples. Our results support recent findings that suggest a link between lamin B2 loss and the formation of chromosome aneuploidies in cell culture. In conclusion, our data demonstrates several key novel findings. Firstly, we have established a sensitive technique for the detection of up to 1% mosaicism, which to our knowledge is the most sensitive assay currently available. Secondly, we showed significant changes in the gene loci positioning between aneuploid and diploid cell lines. Thirdly, utilising our novel ddPCR™ assay, we demonstrated the karyotypical instability of hPCSs with consistent gains and/or loses of gene copy numbers in a short period of time in culture. When studying the effects of different growth conditions, we showed that the karyotypical instability was not exclusive to a single condition or a combination of conditions, and what is more, the karyotypical abnormalities detected were not observed to change the gene positioning of hPSCs significantly, with the genome organisation remaining plastic. Finally, our results support a potential association of lamin B2 loss and karyotypical instability. We conclude that more sensitive and robust techniques need to be readily used by clinicians for the screening of potential therapeutic hPSCs.
6

Characterisation of transcriptional and chromatin events in relation to floral transition and identification of nuclear organisation determinants / Caractérisation des événements transcriptionnels et chromatiniens en relation avec la transition florale et identification de déterminants de l'organisation du noyau

Del Prete, Stefania 21 March 2017 (has links)
La transition florale résulte d’un jeu complexe d’interactions entre des signaux endogènes et environnementaux. Les feuilles jouent un rôle crucial dans ce processus en percevant les changements associés à la lumière et en produisant les photosynthétats qui participant à la signalisation de la floraison. Toutefois, notre connaissance des changements se produisant dans les feuilles lors de la transition florale reste limitée. Nous avons caractérisé les événements morphologiques, moléculaires et transcriptionnels en relation avec la floraison florale dans les feuilles matures chez Arabidopsis, en exploitant un système de transfert de conditions en jours courts vers des jours longs, transfert qui permet d’induire et synchroniser la floraison. Nous avons identifié la fenêtre temporelle de la transition florale, mesuré la croissance foliaire, et observé un accroissement de la ploïdie au cours du processus. Par une approche de RNA-seq, nous avons étudié la dynamique transcriptionnelle des réseaux de gènes dans la feuille, et comparé avec des données dans la racine et le méristème pour avoir une vue plus intégrée de la floraison dans la plante. De plus, nous avons analysé le mode d’action de LHP1 (LIKE HETEROPROTEIN 1), une sous unité du complexe PRC1, en exploitant des lignées transgéniques avec des modifications conditionnelles du dosage de LHP1 et en analysant les effets sur la chromatine et la transcription des gènes impliqués dans la floraison. Une modulation courte du dosage en LHP1 modifie le dépôt des marques H3K27me3 et H3K4me3, démontrant une interaction fonctionnelle entre LHP1 et le complexe PRC2, et suggérant aussi un nouveau rôle dans la formation de régions chromatiniennes de type bivalent. Enfin, étant donné le rôle clé de l’organisation nucléaire dans la régulation génique, nous avons recherché et identifié des déterminants de l’architecture nucléaire en utilisant de nouveaux outils de statistiques spatiales. / The transition to flowering results from a complex interplay between endogenous and environmental cues. The leaves play a key role in this process, by perceiving the light changes and producing photosynthates, which participate to the floral signalling. However, our knowledge on the changes occurring in leaves during floral transition is still limited. We characterised the morphological, molecular and transcriptional events related to floral transition in mature leaves in Arabidopsis, using a short-day to long-day shift to induce a synchronized flowering. We identified the temporal window of the floral transition, monitored the leaf growth and observed an increase in their ploidy level during the process. By RNA-seq we studied the transcriptional dynamics of the leaf gene network, and compared with events occurring in roots and meristems to get an integrated view of floral transition in the whole plant. Furthermore, we investigated the mode of action of LIKE HETEROPROTEIN 1 (LHP1), a PRC1 subunit, by exploiting transgenic lines with conditional alterations of LHP1 dosage and analysing the effects on chromatin and transcription of flowering genes. A short-term modulation of LHP1 dosage altered the deposition of H3K27me3 and H3K4me3, showing a functional interaction between LHP1 and PRC2, and also suggesting a new role in the formation of bivalent chromatin regions. Finally, since nuclear organisation plays a key role in gene regulation, we searched and identified determinants of the nuclear architecture by using innovative spatial statistical tools.
7

Cartographie fonctionnelle des macrophages porcins : expression des gènes et architecture nucléaire lors de l'activation par LPS-IFNg / Functional mapping in swine macrophages : gene expression and nuclear architecture during activation by LPS-IFNg

Solinhac, Romain 31 May 2011 (has links)
Depuis les 15 dernières années, de nombreuses études ont mis en évidence le rôle majeur de l’architecture nucléaire dans la régulation de l’expression des gènes et ceci dans une grande diversité de processus biologiques. Bien que la réponse immunitaire soit un de ces processus, peu de données existent sur l’organisation spatiale du génome dans les cellules immunitaires et son impact sur la régulation des gènes dans le contexte d’une réponse à l’infection bactérienne. En utilisant le porc comme organisme modèle, nous avons concentré notre étude sur les macrophages dérivés de monocytes, premières lignes de défense contre les pathogènes. Les cellules immunitaires étant les cibles des mycotoxines, nous nous sommes également intéressés aux effets de la toxine T-2 sur les macrophages et leur réponse induite par les récepteurs TLR. Un effet cytotoxique de la T-2 à une dose de 10 nM, ainsi que des effets inhibiteurs sur certaines réponses liées aux récepteurs TLR ont été mis en évidence. Nous avons ensuite examiné si les changements dans l'expression des gènes dus à l'activation impliquent un repositionnement dans l'espace nucléaire. Une analyse du transcriptome a permis d’identifier les gènes différentiellement exprimés dans les macrophages activés par le mélange LPS-IFNγ et de mettre en évidence des réseaux de gènes impliqués lors de l’activation. Les 4 gènes les plus sur-exprimés (IL1β, IL8, CXCL10 et TNFα) et les 4 gènes les plus sous-exprimés (VIM, LGALS3, TUBA3 et IGF2) ont été sélectionnés pour analyser leur comportement dans l'espace nucléaire au cours de l’activation des macrophages en utilisant la technique FISH 3D. Parmi les 4 gènes sur-exprimés, 3 présentent des modifications de leur position durant le processus d'activation alors que les 4 gènes sous-exprimés ne montent pas de variation de leur position. L'analyse de la position des gènes par rapport à leurs territoires chromosomiques (TC) a été étendue à un second type de cellules immunitaires : les neutrophiles. Des résultats similaires ont été obtenus. Les analyses ont été ensuite complétées par l'étude des 4 gènes sur-exprimés dans un type cellulaire indépendant de la réponse immunitaire (fibroblastes). Nos données suggèrent que les relocalisations dans l'espace nucléaire des gènes différentiellement exprimés dans les cellules immunitaires activées sont gène spécifique, type cellulaire spécifique et concernent essentiellement ceux qui sont sur-exprimés. / For the past 15 years, numerous studies have highlighted the role of nuclear architecture in regulating gene expression in a variety of biological processes. Although the immune response is one of these processes, few data exist on the spatial organization of the genome in immune cells and its impact on gene regulation in the context of a response to bacterial infection. Using pigs as a model organism, we focused our study on monocytederived macrophages, the first lines of defence against pathogens. As immune cells are the targets of mycotoxins, we also studied the effects of T-2 toxin on macrophages and on their responses induced by TLRs. A cytotoxic effect of T-2 at a dose of 10 nM, and an inhibitory effect on some responses related to TLRs have been demonstrated. We then examined whether changes in gene expression due to activation involve a repositioning within the nuclear space. A transcriptome analysis allowed us to identify differentially expressed genes in macrophages activated by LPS-IFNγ and to analyze gene networks involved during activation. The top 4 up-regulated genes (IL1 beta, IL-8, CXCL10 and TNF) and the top 4 down-regulated ones (VIM LGALS3, TUBA3 and IGF2) have been selected to analyze their behaviour in nuclear space during macrophages activation using 3D FISH technique. Among the 4 up-regulated genes, 3 show changes in their position during the activation process while the 4 down-regulated ones did not reposition. The analysis of gene behaviours towards their chromosome territories (CT) was extended to neutrophils and similar results were obtained. The analyses were then completed by the study of the 4 up-regulated genes in a non immune cell type (fibroblast). Our data suggest that relocation in the nuclear space of genes differentially expressed in activated immune cells is gene and cell type specific and mostly concerns those that are up-regulated.
8

Specialised transcription factories

Xu, Meng January 2008 (has links)
The intimate relationship between the higher-order chromatin organisation and the regulation of gene expression is increasingly attracting attention in the scientific community. Thanks to high-resolution microscopy, genome-wide molecular biology tools (3C, ChIP-on-chip), and bioinformatics, detailed structures of chromatin loops, territories, and nuclear domains are gradually emerging. However, to fully reveal a comprehensive map of nuclear organisation, some fundamental questions remain to be answered in order to fit all the pieces of the jigsaw together. The underlying mechanisms, precisely organising the interaction of the different parts of chromatin need to be understood. Previous work in our lab hypothesised and verified the “transcription factory” model for the organisation of mammalian genomes. It is widely assumed that active polymerases track along their templates as they make RNA. However, after allowing engaged polymerases to extend their transcripts in tagged precursors (e.g., Br-U or Br-UTP), and immunolabelling the now-tagged nascent RNA, active transcription units are found to be clustered in nuclei, in small and numerous sites we call “transcription factories”. Previous work suggested the transcription machinery acts both as an enzyme as well as a molecular tie that maintains chromatin loops, and the different classes of polymerases are concentrated in their own dedicated factories. This thesis aims to further characterise transcription factories. Different genes are transcribed by different classes of RNA polymerase (i.e., I, II, or III), and the resulting transcripts are processed differently (e.g., some are capped, others spliced). Do factories specialise in transcribing particular subsets of genes? This thesis developed a method using replicating minichromosomes as probes to examine whether transcription occurs in factories, and whether factories specialise in transcribing particular sets of genes. Plasmids encoding the SV40 origin of replication are transfected into COS-7 cells, where they are assembled into minichromosomes. Using RNA fluorescence in situ hybridisation (FISH), sites where minichromosomes are transcribed are visualised as discrete foci, which specialise in transcribing different groups of genes. Polymerases I, II, and III units have their own dedicated factories, and different polymerase II promoters and the presence of an intron determine the nuclear location of transcription. Using chromosome conformation capture (3C), minichromosomes with similar promoters are found in close proximity. They are also found close to similar endogenous promoters and so are likely to share factories with them. In the second part of this thesis, I used RNA FISH to confirm results obtained by tiling microarrays. Addition of tumour necrosis factor alpha (TNF alpha) to human umbilical vein endothelial cells induces an inflammatory response and the transcription of a selected sub-set of genes. My collaborators used tiling arrays to demonstrate a wave of transcription that swept along selected long genes on stimulation. RNA FISH confirmed these results, and that long introns are co-transcriptionally spliced. Results are consistent with one polymerase being engaged on an allele at any time, and with a major checkpoint that regulates polymerase escape from the first few thousand nucleotides into the long gene.
9

The subnuclear localisation of Notch responsive genes

Jones, Matthew Leslie January 2018 (has links)
Title: The subnuclear localisation of Notch responsive genes. Candidate Name: Matthew Jones Notch signalling is a highly conserved cell-cell communication pathway with critical roles in metazoan development and mutations in Notch pathway components are implicated in many types of cancer. Notch is an excellent and well-studied model of biological signalling and gene regulation, with a single intracellular messenger, one receptor and two ligands in Drosophila. However, despite the limited number of chemical players involved, a striking number of different outcomes arise. Molecular studies have shown that Notch activates different targets in different cell types and it is well known that Notch is important for maintaining a stem cell fate in some situations and driving differentiation in others. Thus some of the factors affecting the regulation of Notch target genes are yet to be discovered. Previous studies in various organisms have found that the location of a gene within the nucleus is important for its regulation and genome reorganisation can occur following gene activation or during development. Therefore this project aimed to label individual Notch responsive loci and determine their subnuclear localisation. In order to tag loci of interest a CRISPR/Cas9 genome-editing method was established that enabled the insertion of locus tags at Notch targets, namely the well-characterized Enhancer of split locus and also dpn and Hey, two transcription factors involved in neural cell fate decisions. The ParB/Int system is a recently developed locus tagging system and is not well characterised in Drosophila. It has a number of advantages over the traditional LacO/LacI-GFP locus tagging system as it does not rely on binding site repeats for signal amplification and can label two loci simultaneously in different colours. This thesis characterised the ParB/Int system in the Drosophila salivary gland and larval L3 neuroblast. Using 3D image segmentation hundreds of nuclei were reconstructed and a volume based normalisation method was applied to determine the subnuclear localisation of several Notch targets with and without genetic manipulations of the Notch pathway.

Page generated in 0.1363 seconds