Spelling suggestions: "subject:"9nucleotide sequence"" "subject:"dinucleotide sequence""
41 |
Allelic sequence diversity at the human beta-globin locusFullerton, Stephanie Malia January 1994 (has links)
No description available.
|
42 |
On multiple sequence alignmentWang, Shu, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
43 |
Inference of bacterial microevolution from large scale DNA sequence datasetsDidelot, Xavier January 2007 (has links)
No description available.
|
44 |
Sequence analysis of the small (s) RNA segment of viruses in the genus OrthobunyavirusMohamed, Maizan January 2007 (has links)
Viruses in the genus Orthobunyavirus (family Bunyaviridae) are classified serologically into 18 serogroups. The viruses have a tripartite genome of negative sense RNA composed of large (L), medium (M) and small (S) segments. The L segment encodes the polymerase protein, the M segment encodes two glycoproteins, Gc and Gn, and a non-structural protein (NSm), and the S segment encodes nucleocapsid (N) and NSs proteins, in overlapping reading frames (ORF). The NSs proteins of Bunyamwera and California serogroup viruses have been shown to play a role in inhibiting host cell protein synthesis and preventing induction of interferon in infected cells. To-date, viruses in only 4 serogroups: Bunyamwera, California, Group C and Simbu, have been studied intensively. Therefore, this study was conducted with the aim to sequence the S RNA segments of representative viruses in the other 14 orthobunyavirus serogroups, to analyse virus-encoded proteins synthesised in infected cells, and to investigate their ability to cause shutoff of host protein synthesis. S RNA segment sequences were obtained from cloned RT-PCR products. They were compared with the available sequences and each other. Complete S RNA sequences of Anopheles A (ANAV) and Tacaiuma virus (TCMV) [Anopheles A serogroup], Anopheles B (ANBV) and Boraceia virus (BORV) [Anopheles B serogroup], Eretmapodites (E147V) and Nyando virus (NDV)[Nyando serogroup], Bwamba virus (BWAV) [Bwamba serogroup], MâPoko virus (MPOV) [Turlock serogroup], Tete (TETEV) and Batama virus (BMAV) [Tete serogroup], and Gamboa (GAMV) and San Juan 2441 virus (SJ244V) [Gamboa serogroup], and partial sequences of Patois virus (PATV) [Patois serogroup], Guama (GMAV) and Bertioga virus (BERV) [Guama serogroup], Capim virus (CAPV) [Capim serogroup] and Palestina virus (PLSV) [Minatitlan serogroup] were obtained. Complete S segment sequences revealed that viruses in the same serogroup have same length of N and NSs proteins, except for the viruses in Gamboa serogroup which were found to have two lengths of NSs protein. Viruses in 4 serogroups (Anopheles A, Anopheles B, Tete and Capim) were found not to encode an NSs ORF, presenting the first report of naturally isolated orthobunyaviruses without an NSs protein. Most of these viruses were found to have longer N proteins compared to those with NSs protein, with the largest N protein observed to date in TETEV and BMAV (258 amino acids). Other viruses 3 (EREV, NDV, GAMV, SJ2441V, BWAV and MPOV) were found to encode both N and NSs proteins in their S segment with the largest and smallest NSs protein detected to date in SJ2441V (137 amino acids) and MPOV (70 amino acids) respectively. The conserved CA rich motif in 5â non coding region (NCR) of Bunyamwera and California serogroups viruses was absent in BWAV and MPOV, while ANBV and BORV were found to have two copies of this motif. Repeated sequences, as observed previously in the 5â NCR of genomic-sense RNA of Lumbo virus (LUMV), were also detected in BWAV and TCMV S RNA segments. Sequence comparisons and phylogenetic analyses of the sequences determined in this study were in agreement with previous serological classification of the viruses, except for BERV and TCMV. BERV, in the Guama serogroup, was found to have a closer relationship with CAPV compared to GMAV. However high sequence identities (>70%) were observed between these 3 viruses, suggesting that they are derived from the same ancestor. N protein and nucleotide sequence identities of TCMV with ANAV were only 53% and 59% respectively. However, Neighbour-Joining (NJ) plot based on complete N amino acid sequence and Maximum Parsimony (MP) plot based on partial N sequence supported previous serological classification which placed this virus in the same clade as ANAV. This study first reports on the proteins synthesised by Bakau, Bwamba, Koongol, Gamboa, Minatitlan, Olifantsvlei and Tete serogroup viruses. Analysis of radio-labelled cell extracts revealed similar protein migration patterns for all the studied viruses compared with other viruses in the genus Orthobunyavirus. Shutoff of host cell protein synthesis, similar to that seen in Bunyamwera virus (BUNV)-infected cells was only observed in ACAV, BAKV, BWAV, CAPV, PAHV, PATV and WONV-infected cells. However, this shutoff was found not related to the presence of NSs protein. In general, viruses in the same serogroup were found to have almost same size of plaque and plaque-size did not correlate with the presence of NSs protein and the virulence of the virus in the mice. In vitro transcription and translation (TnT) using rabbit reticulocyte and wheat germ lysate expression systems further confirmed the sequencing results that no NSs protein was expressed from S cDNA clones of ANAV, TCMV, ANBV, BORV, BMAV and TETEV. S RNA segments shutoff almost similar to BUNV-infected cells was observed in A549 cells infected with TCMV, suggesting that TCMV might use a different mechanism to induce shutoff. No significant shutoff was observed in Hep2, Hep2/V and C6/36 cells infected with any of the viruses. RT-PCR specific for IFN- Ã mRNA in 293 infected cells and IFN reporter gene assays revealed that TCMV was capable of counteracting IFN production similar to wt BUNV, whereas the other NSs minus viruses (ANAV, ANBV, BORV, TETEV and BMAV) were found to be capable of inducing IFN in infected cells. However, only low level of IFN- Ã mRNA and weak activation of the IFN- Ã promoter was detected in ANAV and BMAV- infected cells.
|
45 |
Understand Biology Using Single Cell RNA-SequencingDing, Hongxu January 2018 (has links)
This dissertation summarizes the development of experimental and analytical tools for single cell RNA sequencing (scRNA-Seq), including 1) scPLATE-Seq, a FACS- and plate-based scRNASeq platform, which is accurate, robust, fully automated and cost-efficient; 2) metaVIPER, an algorithm for transcriptional regulator activity inference based on scRNA-Seq profiles; and 3) iterClust, a statistical framework for iterative clustering analysis, especially suitable for dissecting hierarchy of heterogeneity among single cells. Further this dissertation summarizes biological questions answered by combining these tools, including 1) understanding inter- and intra-tumor heterogeneity of human glioblastoma; 2) elucidating regulators of β-cell de-differentiation in type-2 diabetes; and 3) developing novel therapeutics targeting cell-state regulators of breast cancer stem cells.
|
46 |
Mutagenic mechanisms associated with DNA cytosine methylation, DNA base sequence context and DNA precursor pool asymmetryZhang, Xiaolin 14 April 1995 (has links)
Graduation date: 1995
|
47 |
Identification of thermo-tolerant campylobacter fetus by 16S ribosomal RNA gene sequencingTeng, Lee-lee, Jade. January 2001 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 26-32).
|
48 |
Using a complex model of sequence evolution to evaluate and improve phylogenetic methodsHolder, Mark Travis. January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI/Dissertation Abstracts International.
|
49 |
Genetic analysis of the role of SmpB in determining frame on tmRNA /Watts, Talina Christensen, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Chemistry and Biochemistry, 2008. / Includes bibliographical references (p. 71-76).
|
50 |
MUPrimer a tool for finding allele specific PCR-primers for homologous gene sequences /Ahmad, M. Mursaleen, Cheng, Jianlin, January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on March 10, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Thesis advisor: Dr. Jianlin Cheng. Includes bibliographical references.
|
Page generated in 0.073 seconds