• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 63
  • 22
  • 21
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 457
  • 123
  • 122
  • 113
  • 79
  • 79
  • 78
  • 73
  • 54
  • 53
  • 51
  • 51
  • 48
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Nucleotídeos como potenciais promotores do crescimento de leitões recém-desmamados / Nucleotides as potential growth promoters of weanling pigs

Alexandra Natalia Garcia 02 August 2007 (has links)
O objetivo deste trabalho foi avaliar os nucleotídeos, como potenciais promotores do crescimento de leitões recém-desmamados, por meio de estudos da morfometria de órgãos, histologia do epitélio intestinal e desempenho dos animais. Foi realizado um experimento em blocos casualizados, com 33 dias de duração, para testar cinco tratamentos que consistiam em ração basal com níveis de 0, 2.000, 4.000, 6.000 e 8.000 ppm de nucleotídeos. Para o desempenho, foram utilizados 60 leitões com idade média de 21 dias e peso inicial de 5,50 ± 1,56 kg, quatro repetições por tratamento e três animais por unidade experimental. Ao final do período experimental, um animal de cada unidade experimental (totalizando 20 animais) foi abatido para avaliação da morfometria dos órgãos e histologia do epitélio intestinal. Não foi detectado qualquer efeito significativo (P>0,05) dos níveis de nucleotídeos sobre o ganho diário de peso e consumo diário de ração durante os períodos de 1 a 14 e 1 a 33 dias de experimentação. Contudo, é importante ressaltar que, em relação ao tratamento controle, o melhor nível (4.000 ppm) para conversão alimentar no período de 1 a 14 dias (melhora de 7%), foi o pior no período de 1 a 33 dias de experimentação, (piora de 12%), muito embora sem afetar negativamente o ganho de peso e o consumo de ração. Com relação à morfometria dos órgãos e a histologia do epitélio intestinal dos animais, os nucleotídeos proporcionaram redução linear no peso relativo do fígado e do colón. Assim, os nucleotídeos não evidenciaram o efeito promotor do crescimento de leitões na fase de creche, alimentados com dietas práticas complexas, baseadas em milho, milho prégelatinizado, glúten de milho, soro de leite em pó, farelo de soja, levedura seca, farinha de peixe, (suplementados com aminoácidos sintéticos, óxido de zinco e colistina) e alojados em adequadas condições de ambiente. / The purpose of this work was to evaluate the effect of nucleotides as potential growth promoters of weanling pigs, based on performance, organ morphometry and intestinal epithelium histology. A 33-d randomized complete block design experiment was carried out to test five treatments, consisting on basal diet with 0, 2,000, 4,000, 6,000 and 8,000 ppm of nucleotides. Sixty pigs (averaging 21 days of age and 5.50 ± 1.56 kg live weight), four replications per treatment, and three animals per experimental unit were used for performance data. At the end of experimental period, one animal per pen (a total of 20 animals) was slaughtered for organ morphometry and intestinal epithelium histology data. No significant effects of nucleotide levels (P>0.05), on daily weight gain and daily feed intake were observed, during the period of 1 to 14 and 1 to 33 days of experiment. However is important to emphasize that, compared to control treatment, the best level (4,000 ppm) for feed conversion for 1-14 d period (7 % improvement) was the worse level (P=0.003) for 1-33 d period (12 % worse), even though any effect was observed on daily gain and daily feed intake. Concerning to organ morphometry and intestinal epithelium histology, added nucleotides gave linear depressive effects on relative liver and colon weights. Thus, nucleotides did not show growth promoter effect on weaniling pigs fed practical complex diet, based on corn, pre-cooked corn, corn gluten meal, dried whey, soy bean, dried yeast, fish meal, (supplemented with amino acid, zinc oxide and colistin) and housed in a clean environment.
312

Caenorhabditis elegans as a Model for Host-Microbe-Drug Interactions

Garcia Gonzalez, Aurian P. 30 April 2019 (has links)
The microbes that inhabit the human body, our microbiota, greatly influence our physiology and propensity for disease. For instance, the gut microbiota metabolizes compounds from our diet to provide important nutrients. Similarly, the microbiota has the potential to impact drug response; directly by metabolizing drugs, or indirectly by providing metabolites to the host. The complexity of the mammalian microbiota, and the limited throughput of such models, prohibit a systematic interrogation of specific interactions between microbes and host drug response. Here, I use C. elegans and its bacterial diet as a suitable model with the scalability and genetic tractability to address these questions. In Chapter II, I describe host-bacteria-drug interactions involving the anti-pyrimidine drugs 5-FU and FUDR. In brief, we identified two main mechanisms by which bacteria affect the C. elegans response to anti-pyrimidines: (1) metabolic conversion into FUMP by uridine phospho-ribosyltransferase (upp) and (2) dietary supplementation of uracil. Chapter III will focus on a selective estrogen-receptor modulator, TAM, with no clear target in bacteria or C. elegans. I will describe my work characterizing a bacteria-dependent response to TAM involving fatty acid metabolism. Lastly, the Appendix will summarize my efforts to expand the sample space of tested host-microbe-drug interactions.
313

Transcriptional Control of Human Histone Gene Expression: Delineation and Regulation of Protein/DNA Interactions: A Thesis

van Wijnen, Andre John 01 May 1991 (has links)
Transcriptional regulation of cell cycle controlled genes is fundamental to cell division in eukaryotes and a broad spectrum of physiological processes directly related to cell proliferation. Expression of the cell cycle dependent human H4, H3 and H1 histone genes is coordinately regulated at both the transcriptional and posttranscriptional levels. We have systematically analyzed the protein/DNA interactions of the immediate 5'regions of three prototypical cell cycle controlled histone genes, designated H4-F0108, H3-ST519 and H1-FNC16, to define components of the cellular mechanisms mediating transcriptional regulation. Multiple biochemically distinct protein/DNA interactions were characterized for each of these genes, and the binding sites of several promoter-specific nuclear DNA binding activities were delineated at single nucleotide resolution using a variety of techniques. These findings were integrated with results obtained by others and revealed that the in vitro factor binding sites in H4, H3 and H1 histone promoters coincide with genomic protein/DNA interaction sites defined in vivofor the H4-F0108 and H3-STS19 genes, and with evolutionarily conserved cis-acting sequences shown to affect the efficiency of histone gene transcription. Specifically, we have defined binding sites for Sp1, ATF, CP1/NF-Y, HiNF-D, HiNF-M, HiNF-P and HMG-I related factors. Based on sequence-similarities and cross-competition experiments, we postulate that most of these protein/DNA interaction elements are associated with more than one class of histone genes. Thus, the protein/DNA interactions characterized in this study may represent components of a cellular mechanism that couples transcription rates of the various histone gene classes. Regulation of the protein/DNA interactions involved in transcriptional control of these H4, H3 and H1 histone genes was investigated in a spectrum of cell types using several distinct in vitro cell culture models for the onset of differentiation and quiescence, as well as cell cycle progression. Moreover, we studied control of histone gene associated DNA binding activities during hepatic development from fetus to adult in transgenic mice reflecting the onset of differentiation and quiescence in vivo. We show that the H4 histone promoter protein/DNA interaction mediated by factor HiNF-D is selectivelymodulated, and directly at the level of DNA binding activity, during the entry into, progress through and exit from the cell cycle in normal diploid cells, as well as during hepatic development. The regulation of this protein/DNA interaction occurs in parallel with analogous interactions occurring in H3 and H1 histone genes. Moreover, these proliferation-specific protein/DNA interactions are collectively deregulated during the cell cycle in four distinct cell types displaying properties of the transformed phenotype. Hence, the cellular competency to coordinately transcribe distinct classes of histone genes during the cell cycle may be mediated by the intricate interplay of constitutively expressed general transcription factors and temporally regulated, cell growth controlled nuclear factors interacting specifically with cell cycle dependent histone genes. Finally, we show that HiNF-D is represented by two electrophoretically distinct species. The ratio of these forms of HiNF-D fluctuates dramatically during the cell cycle of normal diploid cells, but remains relatively constant in tumor cells. Total HiNF-D binding activity embodied by both HiNF-D species is negatively influenced in vitro by incubation with exogenous phosphatase activity. These observations provide a first indication for the hypothesis that HiNF-D may exist in distinct post-translationally modified forms that are subject to a stringent cell growth control mechanism involving protein kinases and phosphatases. Such a cellular post-translational modification mechanism, which directly impinges on (or activates) the DNA binding activity of a key factor controlling histone genes, would provide a highly efficient means by which to influence the rate of transcription in rapid response to intra-cellular requirements for histone mRNA and extra-cellular cues signalling the onset and cessation of cell proliferation.
314

Identification and Characterization of Agv1, a Pre-Metazoan Arf GAP: A Dissertation

Long, Kimberly Renee 20 June 2007 (has links)
Human immunodeficiency virus type 1 (HIV-1) is a member of the lentivirus subfamily of retroviruses. HIV-1 expresses multiple genes from a single provirus by alternative splicing. Early in viral expression, fully spliced 2-kb viral RNA is exported from the nucleus and encodes the viral regulatory protein, Rev, which is essential for nuclear transport of partially spliced and unspliced genomic-length RNA. Rev binds to an RNA structural element called the Rev response element (RRE) and mediates nuclear export through the leucine-rich nuclear export signal (NES) pathway. The human Rev Interacting Protein (hRIP) interacts specifically with the Rev NES. Rev NES mutants that are unable to export Rev-dependent RNAs are also unable to bind to hRIP. The hRIP cDNA encodes a 562 amino acid protein containing an N-terminal zinc finger with homology to Arf GAP domains, a central serine and threonine rich region, and C-terminal phenylalanine-glycine (FG) repeats characteristic of nucleoporins. To identify an hRIP ortholog in a genetically tractable organism, we performed database searches using the N-terminal zinc finger of hRIP. Using this approach, we identified a novel gene in Schizosaccharomyces pombe. Alignment of the entire reading frame of the putative ortholog with hRIP indicates similarity with the serine/threonine rich region and with the FG repeats, suggesting that S. pombecould be a good model system to study the cellular function of hRIP. We find that the S. pombe ORF is an essential gene, which encodes a 483 amino acid protein that is also able to interact with the NES of HIV-1 Rev. Based on being an essential gene, and the presence of a putative Arf GAP domain, the ORF was named an Arf GAP essential for viability, agv1+. We show that Agv1 is not directly involved in the nuclear export of poly(A+) RNA or 5S rRNA, nuclear export of leucine-rich NES-containing proteins, or nuclear import of nuclear localization signal (NLS)-containing proteins. However, Agv1 does appear to play a role in the cytoplasmic localization of 5S rRNA. We demonstrate that loss of Agv1 alters the localization of endoplasmic reticulum (ER) membrane and Golgi membrane resident proteins, accumulates intracellular membrane, and blocks processing of carboxypeptidase Y. Furthermore, the S. cerevisiae ADP-ribosylation factor (Arf) GTPase activating protein (GAP) Glo3, but not a catalytically inactive Glo3 mutant [R59K], is able to partially compensate for the loss of Agv1 function in temperature sensitive strains, indicating that Agv1 is an S. pombe Arf GAP with some functional features similar to S. cerevisiae Glo3.
315

Genetic Approaches to Study Transcriptional Activation and Tumor Suppression: A Dissertation

Lin, Ling 01 May 2012 (has links)
The development of methods and techniques is the driving force of scientific research. In this work, we described two large-scale screens in studying transcriptional activation and tumor suppression. In Part I, we studied transcriptional activation mechanisms by deriving and characterizing activation defective mutants. Promoter-specific transcriptional activators stimulate transcription through direct interactions with one or more components of the transcription machinery, termed the “target.” The identification of direct in vivo targets of activators has been a major challenge. We perform a large-scale genetic screen to derive and characterize tra1 alleles that are selectively defective for interaction with Gal4 in vivo. Utilizing these mutants, we demonstrated that Tra is an essential target for Gal4 activation, Gal4 and Tra1 bind cooperatively at the promoter and the Gal4–Tra1 interaction occurs predominantly on the promoter. In addition, we demonstrated that the Gal4-interaction site on Tra1 is highly selective. In Part II, we described a functional genomics approach to discover new tumor suppressor genes. A goal of contemporary cancer research is to identify the genes responsible for neoplastic transformation. Cells that are immortalized but non-tumorigenic were stably transduced with pools of short hairpin RNAs (shRNAs) and tested for their ability to form tumors in mice. ShRNAs in any resulting tumors were identified by sequencing to reveal candidate TSGs, which were then validated both experimentally and clinically by analysis of human tumor samples. Using this approach, we identified and validated 33 candidate TSGs. We found that most candidate TSGs were down-regulated in >70% of human lung squamous cell carcinoma (hLSCC) samples, and 17 candidate TSGs negatively regulate FGFR signalling pathway, and their ectopic expression inhibited growth of hLSCC xenografts. Furthermore, we suggest that by examining at the expression level of TSGs in lung cancer patients, we can predict their drug responsiveness to FGFR inhibitors. In conclusion, we have identified many new lung squamous cell cancer TSGs, using an experimental strategy that can be broadly applied to find TSGs in other tumor types.
316

MicroRNA Markers of Acetaminophen Toxicity: A Master's Thesis

Ward, Jeanine 25 July 2012 (has links)
Background To investigate plasma microRNA (miRNA) profiles indicative of hepatotoxicity in the setting of lethal acetaminophen (APAP) toxicity in mice. Methods Using plasma from APAP poisoned mice, either lethally (500 mg/kg) or sublethally (150 mg/kg) dosed, we screened commercially available murine microRNA libraries (SABiosciences, Qiagen Sciences, MD) to evaluate for unique miRNA profiles between these two dosing parameters. Results We distinguished numerous, unique plasma miRNAs both up- and down-regulated in lethally compared to sublethally dosed mice. Of note, many of the greatest up- and down-regulated miRNAs, included, but were not limited to, 574-5p, 466g, 466f-3p, 375, 29c, and 148a. There was a statistically significant increase in alanine aminotransferase levels in the lethal compared to sublethal APAP dosing groups at the 12 h time point ( P < 0.001). There was 90% mortality in the lethally compared to sublethally dosed mice at the 48 h time point ( P = 0.011). Conclusion We identified unique plasma miRNAs both up- and down-regulated in lethally dosed APAP poisoned mice.
317

Cross-Talk Between Factors Involved in mRNA Translation and Decay: A Dissertation

Ghosh, Shubhendu 08 February 2010 (has links)
The proper workings of an organism rely on the accurate expression of genes throughout its lifetime. An important determinant for protein production is the availability of template mRNA molecules, the net effect of which is governed by their rates of synthesis vs. their rates of degradation. Normal mRNAs are proposed to be relatively stable in the cytoplasm while present in a protective, circularized conformation – the closed loop – through eIF4G-bridged interactions with 3’-bound poly(A) binding protein (Pab1p) and 5’-bound eIF4E. Introduction of a premature nonsense codon into an otherwise normal mRNA results in its rapid destabilization in cells, suggesting that not all stop codons behave the same, and events at premature termination events that lead to accelerated degradation of nonsense-containing mRNAs likely differ from those at normal termination, in which normal decay rates are maintained. The enhanced degradation observed for nonsense-containing mRNAs occurs through an evolutionarily conserved pathway involving the products of the UPF1, UPF2/NMD2, and UPF3 genes, the precise biochemical roles of which have remained elusive. We have developed a yeast cell-free translation system that allows us to assay biochemical events occurring at premature termination codons, compare them to those occurring at normal terminators, and study the role of Upf1p in these events. We find that premature termination is an inefficient process compared to normal termination and that one outcome of termination at a premature termination codon (PTC) is reinitiation at a nearby start codon. This in vitro post-termination reinitiation phenotype is dependent on the presence of Upf1p, a finding we have recapitulated in vivo. We also developed biochemical assays to define a role for Upf1p in translation following premature termination in vitro and find that Upf1p is involved in post-termination ribosome dissociation and reutilization. Supporting this idea are our findings that Upf1p predominantly cosediments with purified 40S ribosomal subunits. Finally, using our in vitro translation/toeprinting system, we have further characterized events leading to the formation of the mRNA closed loop structure and find that two states of the closed loop exist. The first requires the preinitiation 48S complex and includes Pab1p, eIF4G, eIF4E, and eIF3, whereas the second is formed after 60S joining and additionally requires the translation termination factors eRF1 and eRF3.
318

Vibrační optická aktivita nukleotidů a kratších segmentů nukleových kyselin / Vibrational optical activity of nucleotides and shorter nucleic acid segments

Jílek, Štěpán January 2021 (has links)
1 Nucleotides are organic molecules that have a wide range of functions in living organisms. They participate in cell signaling, serve as cofactors of enzymatic reactions, play a central role in cellular metabolism, and are the basic monomeric units of nucleic acid polymers. Nucleotides consist of three subunit molecules - nitrogen nucleobase, a five-carbon sugar (ribose or 2'-deoxyribose), and a phosphate group containing one to three phosphates. The subject of this master thesis is the study of various nucleotides and their self-assemblies in water by means of vibrational spectroscopy - Raman scattering and its chirally sensitive variant Raman optical activity (ROA). ROA has the potential to provide new information about the structural arrangement, dynamics, and interactions of nucleotides, as it supposes to be much more sensitive to vibrations of its sugar part containing three to four chiral carbons, compared to Raman scattering. We study spectral manifestations associated with chemical modifications (difference between ribo- and deoxyribonucleotides, the influence of different phosphate positions) and the change of physical conditions (various charge states according to the set pH, effect of concentration, influence of ions). A substantial amount of work is devoted to studying the self-association of...
319

Molecular Mechanisms of Allosteric Inhibition in Cylic-Nucleotide Dependent Protein Kinases / Allosteric Inhibition in Protein Kinases

Byun, Jung Ah January 2020 (has links)
Allosteric inhibition of kinases provides high selectivity and potency due to lower evolutionary pressure in conserving allosteric vs. orthosteric sites. The former are regions distinct from the kinase active site, yet, when perturbed through allosteric effectors, induce conformational and/or dynamical changes that in turn modulate kinase function. Protein kinases involved in cyclic nucleotide signalling are important targets for allosteric inhibition due to their association with diseases, from infections to Cushing’s syndrome. This dissertation specifically focuses on elucidating the molecular mechanism of allosteric inhibition in the cAMP-dependent protein kinase (PKA) and the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG), which are targets for a generalized tumor predisposition commonly referred to as Carney Complex and for malaria, respectively. In chapters 2 and 3, we focus on the agonism-antagonism switch (i.e. allosteric pluripotency) observed as the phosphorothioate analog of cAMP, Rp-cAMPS (Rp), binds to PKA. Utilizing Nuclear Magnetic Resonance (NMR), Molecular Dynamics (MD) simulations and Ensemble Allosteric Model (EAM), we determined that two highly homologous cAMP-binding domains respond differently to Rp, giving rise to a conformational ensemble that includes excited inhibition-competent states. The free energy difference between this state and the ground inhibition-incompetent state is tuned to be similar to the effective free energy of association of the regulatory (R) and catalytic (C) subunits, leading to allosteric pluripotency depending on conditions that perturb the R:C affinity. The general significance of these results is a re-definition of the concept of allosteric target to include not only the isolated allosteric receptor, but also its metabolic and proteomic sub-cellular environment. In chapter 4, we utilize a mutant that silences allosteric pluripotency to reveal that the agonism-antagonism switch of PKA not only arises from the mixed response of tandem domains, but also from the mixed response of allosteric regions within a single domain that mediates interactions with Rp. In chapter 5, the allosteric inhibition of PfPKG associated with malaria is induced through base-modified cGMP-analogs and the underlying inhibitory mechanism is determined. We show that, when bound to a PfPKG antagonist, the regulatory domain of PfPKG samples a mixed intermediate state distinct from the native inhibitory and active conformations. This mixed state stabilizes key cGMP-binding regions, while perturbing the regions critical for activation, and therefore it provides an avenue to preserve high affinity, while promoting significant inhibition. Overall, in this thesis, previously elusive mechanisms of allosteric inhibition were elucidated through the combination of NMR, MD, and EAM methods. Through this integrated approach, we have unveiled an emerging theme of inhibitory ‘mixed’ states, either within a single domain or between domains, which offer a simple but effective explanation for functional allostery in kinases. / Thesis / Candidate in Philosophy
320

Regulation of pancreatic and parotid zymogen granule chloride and potassium ion conductance pathways by cytosol nucleotides: Phosphorylation-dependent and -independent mechanisms

Thevenod, Frank January 1993 (has links)
No description available.

Page generated in 0.0607 seconds