• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 63
  • 22
  • 21
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 457
  • 123
  • 122
  • 113
  • 79
  • 79
  • 78
  • 73
  • 54
  • 53
  • 51
  • 51
  • 48
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Cancer and microenvironment : the functional interplay between intra- and extracellular nucleotide metabolisms / Cancer et microenvironnement : dialogue fonctionnel entre les métabolismes nucléotidiques intracellulaire et extracellulaire

Cadassou, Octavia 05 October 2018 (has links)
Les nucléotides jouent un rôle majeur dans une pléiade de processus biologiques comme la composition des acides nucléiques, la signalisation, ou la régulation de la balance énergétique. Les nucléotides extracellulaires exercent également des fonctions biologiques. Par conséquent, des dérégulations des pools de nucléotides impactent l’homéostasie de multiples façons, par exemple en promouvant l’instabilité génétique ou un environnement immunosuppresseur. Or, ces paramètres font partie des « Hallmarks du Cancer » décrits par Hanahan et Weinberg. Ces observations confirment l’éventualité d’un rôle clé des nucléotides dans le cadre du cancer.cN-II et CD73 sont des 5’-nucléotidases impliquées respectivement dans les métabolismes nucléotidiques intra- et extracellulaire. Elles sont de nouvelles cibles thérapeutiques en oncologie. Cependant, leurs rôles dans la biologie de la cellule cancéreuse, ou le possible impact de leur utilisation en tant que cible thérapeutique sur le comportement des cellules tumorales sont peu connus. Considérant l’implication de ces enzymes dans les métabolismes nucléotidiques, nous avons enquêté sur les modifications de l’agressivité de la cellule cancéreuse ou sur sa capacité à interagir avec son microenvironnement, dans le cas d’une invalidation ou une diminution d’expression de cN-II et/ou CD73. cN-II semble donc impliquée dans l’adaptabilité métabolique et la combinaison des invalidations de cN-II et CD73 est associée à une modification d’expression d’enzymes du métabolisme du glucose. CD73 peut aussi moduler l’expression de gènes de la migration cellulaire. cN-II est impliquée dans la migration cellulaire, via l’axe COX-2/PGE2, et dans la sensibilité à des agents modulant ce paramètre. Ces caractéristiques sont plus marquées en association avec une invalidation de CD73. Ici, cN-II et CD73 ne semblent pas jouer de rôle dans la prolifération ou le dialogue avec une sous-population de cellule de l’immunité innée / Nucleotides play a major role in nucleic acids constitution and are involved in various cell phenomena. Indeed, intracellular ATP, GTP, AMP, GMP and their cyclic forms are components of cell signaling and define the energetic balance. Extracellularly, they also play multiple roles. Thus, when nucleotide pools are deregulated various processes are impacted. For example, a low availability of nucleotides supports genetic instability and aberrant levels of extracellular adenosine can lead to an immunosuppressive microenvironment. Interestingly, the cited parameters are among the Cancer Hallmarks described by Hanahan and Weinberg. These observations confirm the possibility of a key role of these molecules in this pathology. cN-II and CD73 are 5’-nucleotidases, involved in intra- and extracellular nucleotide metabolism respectively and have been identified as possible targets for new anti-cancer therapies. Nevertheless, very little is known about their biological roles on cancer cells and what parameters of cell biology could be impacted by such strategies. Considering the involvement of these purines in cell metabolism, we wondered what changes a decrease in cN-II and/orCD73 expressions or their silencing could trigger in cancer cells as well as in the interplay with their microenvironment.We studied cancer cell aggressiveness and the interplay with innate immune cells under cN-II and CD73 modulations. We observed that cN-II is involved in metabolic adaptability. The association of cN-II and CD73 invalidations results in glucose-metabolism-related gene modifications. CD73 can regulate migration-related genes expression but does not affect the process. cN-II is also involved in cell migration, via the COX-2/PGE2 axis. Again, these characteristics are accentuated when associated with CD73 deficiency. Here, cN-II and CD73 do not seem to be involved in cancer cell proliferation or in their interplay with a subset of innate immune cells
292

A influência do microRNA miR-21 no câncer de tiróide. / The role of microRNA miR-21 thyroid cancer.

Dzik, Luciana Machado 30 September 2013 (has links)
O carcinoma tiroidiano apresenta alterações na via MAPK, destacando-se o rearranjo RET/PTC. Alterações na expressão de microRNAs também são observadas. O aumento da expressão de miR-21 nos levou a analisar o papel deste na tumorigênese tiroidiana, bem como a influência da ativação oncogênica de RET/PTC3 durante este processo. A expressão de miR-21 foi analisada em 4 linhagens e a sua modulação foi realizada em células PCCL3 e KTC-2. RET/PTC3 foi ativado em células PTC3-5 e analisou-se a sua influência na expressão de miR-21 e na proliferação celular. Todas as linhagens expressam miR-21. A transfecção de anti-miR-21 em células KTC-2 inibiu em 80% a expressão deste miRNA, observando-se um aumento de SMAD7. A super-expressão de miR-21 em PCCL3 não alterou a proliferação. A indução de RET/PTC3 aumentou a expressão de miR-21 e diminui a proliferação, e quando ativado concomitante ao tratamento com TGFb-1, a diminuição na proliferação se acentuou, sugerindo que RET/PTC3 ative a via TGFb através da inibição de SMAD7 mediada por miR-21. / Alterations in MAPK signaling are common in thyroid cancer, including RET/PTC rearrangement. Additionally, several studies described the altered expression of microRNAs. The up-regulation of miR-21 on thyroid cancer led us to evaluate the role of this molecule on thyroid tumorigenesis, and also the influence of RET/PTC3 activation in this process. MiR-21 expression was analyzed in four thyroid cell lines, and the modulation of this miRNA was performed in KTC-2 and PCCL3 cells. PTC3-5 cells were used to analyze the influence of RET/PTC3 on miR-21 expression and cell proliferation. miR-21 expression was found in both cell lines. Anti-miR-21 transfection in KTC-2 cells decreased miR-21 levels in 80% and also increased SMAD7 expression. The up-regularion of RET/PTC3 increased miR-21 expression and decreased cell growth. The activation of RET/PTC3 combined to TGFb-1 treatment accentuated decrease in proliferation, suggesting that RET/PTC3 positively regulates TGFb pathway through miR-21-dependent SMAD7 inhibition.
293

Azido- and Triazolyl-modified Nucleoside/tide Analogues: Chemistry, Fluorescent Properties, and Anticancer Activities

Wen, Zhiwei 25 June 2018 (has links)
Two classes of C5 azido-modified pyrimidine nucleosides were synthesized and explored as radiosensitizers. The 5-azidomethyl-2'-deoxyuridine (AmdU) was prepared from thymidine and converted to its cytosine counterpart (AmdC). The 5-(1-azidovinyl) modified 2'-deoxyuridine (AvdU) and 2'-deoxycytidine (AvdC) were prepared employing regioselective Ag-catalyzed hydroazidation of 5-ethynyl pyrimidine substrates with TMSN3. AmdU and AmdC were converted to 5'-triphosphates AmdUTP and AmdCTP, and incorporated into DNA-fragments via polymerase-catalyzed reaction during DNA replication and base excision repair. Radiation-mediated prehydrated electrons formed in homogeneous aqueous glassy (7.5 M LiCl) systems in the absence of oxygen at 77 K led to site-specific formation of π-type aminyl radicals (RNH•) from AmdU, AmdC, AvdU, and AvdC. The ESR spectral studies and DFT calculations showed RNH• undergo facile conversion to thermodynamically more stable σ-type iminyl radicals, R=N•. For AmdU, conversion of RNH• to R=N• was bimolecular involving α-azidoalkyl radical as intermediate; however, for AvdU, RNH• tautomerized to R=N•. Our work provides the first evidence for the formation of RNH• attached to C5 position of azidopyrimidine nucleoside and its facile conversion to R=N• under reductive environment. These aminyl and iminyl radicals can generate DNA damage via oxidative pathways. The azido-nucleosides were successfully applied as radiosensitizers in EMT6 cancer cells in both hypoxic and normoxic conditions. To explore the generation and reactivity of 2'‑deoxyguanosin-N2-yl radical (dG(N2-H)•) postulated to generate from guanine moiety towards •OH, 2-azido-2'-deoxyinosine (2-N3dI) was prepared by conversion of 2-amino group in protected dG into 2-azido via diazotization with tert-butyl nitrite followed by displacement with azide and deprotection. The investigation of dG(N2-H)• generated from 2-N3dI and its subsequent reactions using ESR will be discussed. Cycloaddition between 5-ethynylpyrimidine or 8-ethynylpurine nucleosides and TMSN3 in the presence of Ag2CO3, CuI, or CuSO4/sodium ascorbate provided N-unsubstituted 1,2,3-triazol-4-yl analogues of the parental DNA bases (i.e. 5-TrzdU, 5‑TrzdC, 8-TrzdA, and 8-TrzdG). These novel triazolyl nucleosides showed excellent fluorescent properties: 8-TrzdA exhibits the highest quantum yield (ΦF) of 44% while 8‑TrzdG had ΦF of 9%. The 5-TrzdU and 5-TrzdC showed a large Stokes shift of ~110 nm. The application of these fluorescent nucleosides to cell imaging and DNA modifications will also be discussed.
294

Functional assessment of the role of cyclic nucleotide-gates channel (CNGC10) and salt overly sensitive (SOS1) antiporter in salinity tolerance in Arabidopsis

Guo, Kunmei January 2009 (has links)
Control of intracellular ion homeostasis is pivotal to plant salt tolerance. Plants have developed a number of mechanisms to keep ions at appropriate concentrations. Both transporters and channels on the plasma membrane play important roles in this function. Plant cyclic nucleotide-gated channels (CNGCs) in the plasma membrane are non-selective monovalent and divalent cation channels. So far, most studies on plant CNGCs have been conducted on heterologous systems. In planta, reverse genetic studies revealed the role of different CNGCs in cation uptake, transport and homeostasis. However, there is little information available about the functional characteristics of plant CNGCs. Among the 20 members of this protein family in Arabidopsis, only AtCNGC2 has been functionally identified as an ion channel; therefore, more functional characterization needs to be done on other members of this protein family. Several CNGCs were suggested to be involved in K+, Ca2+ and Na+ uptake and transport, but available information is scarce. This study investigated the relationship between CNGC10 and ion transport in Arabidopsis, with a particular emphasis on the involvement of CNGC10 in salt tolerance. Arabidopsis thaliana wild type (WT) and two AtCNGC10 antisense lines (A2 and A3) were used to characterise the impact of different level of salt stress on (i) root growth, ion concentration in tissues, ion fluxes across the root surface and intracellular ion concentration and pH at the seedling stage, and (ii) photosynthesis and ion concentration in tissues at the flowering stage. Plants of both antisense lines had higher K+ and lower Ca2+ and Mg2+ concentrations in shoots than WT plants when grown in non-salt control 1/4 Hoagland solution. Altered K+, Ca2+ and Mg2+ internal concentrations in AtCNGC10 antisense lines compared with WT plants under non-salt conditions indicated disturbed long distance ion transport, especially xylem loading/retrieval and/or phloem loading. The results of ion fluxes across the root surface also suggested that AtCNGC10 might be involved in transport of K+, Ca2+ and Mg2+ in tissue. Under sudden salt exposure, higher Na+ efflux and smaller K+ efflux in both antisense lines suggested that AtCNGC10 channels are involved in Na+ and K+ transport. The shoots of AtCNGC10 antisense lines A2 and A3 contained higher Na+ concentrations and significantly higher Na+/K+ ratios compared to WT, resulting in impaired photosynthesis and increased salt sensitivity in A2 and A3 than in WT plants. In contrast, seedlings of both antisense lines exposed to salt stress had lower shoot Na+/K+ ratios and longer roots than WT seedlings, indicating that A2 and A3 were more salt-tolerant than WT in the seedling stage, likely because growth is less dependent on photosynthesis in the seedling than in the flowering stage. These results suggested CNGC gene might play a different role during different developmental stages and in various plant organs.
295

Studies on Nucleic Acids – Structure and Dynamics

Isaksson, Johan January 2005 (has links)
<p>This thesis is based on six papers, Papers I-VI, focusing on the interplay between the stabilizing elements of nucleic acids self-assembly; hydrogen bonding, stacking and solvent effects. In Paper I we investigate how the substitution of the O4' for CH<sub>2</sub> in the sugar moiety of adenosine (2'-deoxyaristeromycin) at the A<sup>6</sup> position of the Dickerson-Drew dodecamer makes the two modified bases exist in a dynamic equilibrium between Hoogsteen and Watson-Crick base pairing in the NMR time scale. Paper II is a structural study of the incorporation of 1-(1',3'-<i>O</i>-anhydro-<i>β</i>-D-psicofuranosyl)thymine in the T<sup>7</sup> position of the Dickerson-Drew dodecamer. NMR constrained molecular dynamics and hydration studies show the base-base distortions caused by the introduction of a North-type locked sugar in an otherwise B-type DNA•DNA duplex. Paper III shows that the stacking distortion caused by the 1-(1',3'-<i>O</i>-anhydro-<i>β</i>-D-psicofuranosyl)thymine building block perturbs the charge transfer similar to a DNA mismatch. Paper IV highlights how the sequence context affects the physico-chemical properties, monitored by the p<i>K</i><i>a</i> of guanine itself as well as how the charge perturbation is experienced by the neighboring bases, in ssDNA and ssRNA. Paper V focuses on the differences between the structural equilibria of single-stranded ssDNA and ssRNA. Directional differences in single-stranded stacking between ssDNA and ssRNA are identified and provide a basis to explain directional differences in p<i>K</i><i>a</i> modulation and dangling-end stabilization. In Paper VI the thermodynamic gains of dangling ends on DNA and RNA core duplexes are found to correlate with the X-ray geometries of dangling nucleobases relative to the hydrogen bonds of the closing base pairs.</p>
296

Salvage and de novo synthesis of nucleotides in Trypanosoma brucei and mammalian cells

Fijolek, Artur January 2008 (has links)
All living cells are dependent on nucleic acids for their survival. The genetic information stored in DNA is translated into functional proteins via a messenger molecule, the ribonucleic acid (RNA). Since DNA and RNA can be considered as polymers of nucleotides (NTPs), balanced pools of NTPs are crucial to nucleic acid synthesis and repair. The de novo reduction of ribonucleoside diphosphates (NDPs) to deoxyribonucleoside diphosphates (dNDPs), the precursors for DNA synthesis, is catalyzed by the enzyme ribonucleotide reductase (RNR). In cycling cells the dominant form of mammalian RNR consists of two proteins called R1 and R2. A proteasome-mediated degradation completely deprives postmitotic cells of R2 protein. The nonproliferating cells use instead a p53 inducible small RNR subunit, called p53R2 to synthesize dNTPs for mitochondrial DNA replication and DNA repair. To address the ongoing controversy regarding the localization and subsequently function and regulation of RNR subunits, the subcellular localization of all the mammalian RNR subunits during the cell cycle and after DNA damage was followed as a part of this thesis. Irrespective of the employed methodology, only a cytosolic localization could be observed leading to a conclusion that the dNTPs are synthesized in the cytosol and transported into the nucleus or mitochondria for DNA synthesis and repair. Thus, our data do not support the suggestion that nuclear translocation is a new additional mechanism regulating ribonucleotide reduction in mammalian cells. In an attempt to find a cure for African sleeping sickness, a lethal disease caused by a human pathogen, Trypanosoma brucei, nucleotide metabolism of the parasite was studied. The trypanosomes exhibit strikingly low CTP pools compared with mammalian cells and they also lack salvage of cytidine/cytosine making the parasite CTP synthetase a potential target for treatment of the disease. Following expression, purification and kinetic studies of the recombinant T. brucei CTP synthetase it was found that the enzyme has a higher Km value for UTP than the mammalian CTP synthetase. In combination with a lower UTP pool the high Km may account for the low CTP pool in trypanosomes. The activity of the trypanosome CTP synthetase was irreversibly inhibited by the glutamine analog acivicin, a drug extensively tested as an antitumor agent. Daily injections of acivicin to trypanosome-infected mice were sufficient to suppress the parasite infections. The drug was shown to be trypanocidal when added to cultured bloodstream T. brucei for four days at 1 uM concentration. Therefore, acivicin may qualify as a drug with “desirable” properties, i.e. cure within 7 days, according to the current Target Product Profiles of WHO and DNDi. Trypanosomes lack de novo purine biosynthesis and are therefore dependent on exogenous purines such as adenosine that is taken up from the blood by high-affinity transporters. We found that besides the cleavage-dependent pathway, where adenosine is converted to adenine by inosine-adenosine-guanosine-nucleoside hydrolase, T. brucei can also salvage adenosine by adenosine kinase (AK). The efficient adenosine transport combined with a high-affinity AK yields a strong salvage system in T. brucei, but on the other hand makes the parasites highly sensitive to adenosine analogs such as adenine arabinoside (Ara-A). The cleavage-resistant Ara-A was shown to be readily taken up by the parasites and phosphorylated by the TbAK-dependent pathway, inhibiting trypanosome proliferation and survival by incorporation into nucleic acids and by affecting nucleotide levels in the parasite.
297

Studies on Nucleic Acids – Structure and Dynamics

Isaksson, Johan January 2005 (has links)
This thesis is based on six papers, Papers I-VI, focusing on the interplay between the stabilizing elements of nucleic acids self-assembly; hydrogen bonding, stacking and solvent effects. In Paper I we investigate how the substitution of the O4' for CH2 in the sugar moiety of adenosine (2'-deoxyaristeromycin) at the A6 position of the Dickerson-Drew dodecamer makes the two modified bases exist in a dynamic equilibrium between Hoogsteen and Watson-Crick base pairing in the NMR time scale. Paper II is a structural study of the incorporation of 1-(1',3'-O-anhydro-β-D-psicofuranosyl)thymine in the T7 position of the Dickerson-Drew dodecamer. NMR constrained molecular dynamics and hydration studies show the base-base distortions caused by the introduction of a North-type locked sugar in an otherwise B-type DNA•DNA duplex. Paper III shows that the stacking distortion caused by the 1-(1',3'-O-anhydro-β-D-psicofuranosyl)thymine building block perturbs the charge transfer similar to a DNA mismatch. Paper IV highlights how the sequence context affects the physico-chemical properties, monitored by the pKa of guanine itself as well as how the charge perturbation is experienced by the neighboring bases, in ssDNA and ssRNA. Paper V focuses on the differences between the structural equilibria of single-stranded ssDNA and ssRNA. Directional differences in single-stranded stacking between ssDNA and ssRNA are identified and provide a basis to explain directional differences in pKa modulation and dangling-end stabilization. In Paper VI the thermodynamic gains of dangling ends on DNA and RNA core duplexes are found to correlate with the X-ray geometries of dangling nucleobases relative to the hydrogen bonds of the closing base pairs.
298

Determination of monophosphate nucleotides, sulfur-containing amino acids, arsenic species and various oxidation states of iron, vanadium and chromium by capillary electrophoresis inductively coupled plasma mass spectrometry

Yeh, Ching-fen 15 July 2005 (has links)
Capillary electrophoresis (CE) is in comparison with other chromatographic techniques, CE has several advantages such as high resolving power, small sample volume requirement, minimal buffer consumption and high sample throughtput. As a detection technique, inductively coupled plasma mass spectrometry (ICPMS) provides the advantages of low detection limit, multielement detection, and element- and isotope-specific detection capabilities. Therefore, the use of CE as a high resolution separation technique with ICP-MS as a sensitive element specific detector is of growing interest for analytical research. Four studies in our research are described below, respectively. A preliminary study of a modified microconcentric nebulizer (CEI-100, CETAC) as the sample introduction device of capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) for the determination of monophosphate nucleotides is described. The monophosphate nucleotides studied include adenosine 5¡¦-monophosphate (AMP), guanosine 5¡¦-monophosphate (GMP), uridine 5¡¦-monophosphate (UMP) and inosine 5¡¦-monophosphate (IMP). The species studied were well separated using a 70 cm length ¡Ñ 75 £gm id fused silica capillary while the applied voltage was set at -22 kV and a 20 mmol/L ammonium citrate/citric acid buffer (pH 4.0) containing 0.1% m/v cationic polymer (hexadimethrine bromide, Polybrene) was used as the electrophoretic buffer. The electroosmotic flow was reversed by flushing the fused silica capillary with 0.2% m/v Polybrene to accelerate separation. The detection limit of various species studied was in the range of 0.036~0.054 £gg P/mL, which corresponded to the absolute detection limit of 1.1~1.6 pg P based on the injection volume of 30 nl. We determined the concentrations of nucleotides in two IG-enriched monosodium glutamates purchased from the local market. The recovery was in the range of 100~112% for various species, and the concentrations of IMP and GMP in these samples were in the range of 0.15¡V0.18% m/m. Capillary electrophoresis dynamic reaction cellTM inductively coupled plasma mass spectrometry (CE-DRC-ICP-MS) for the determination of sulfur-containing amino acids is described. The sulfur-containing amino acids studied include L-cysteine, L-cystine, DL-homocystine and L-methionine. The species studied were well separated using a 70 cm length ¡Ñ 75 £gm i.d. fused silica capillary while the applied voltage was set at +22 kV and a 10 mmol/L disodium tetraborate buffer (pH 9.8) containing 0.1 mmol/L EDTA and 0.5 mmol/L Triton X-100 was used as the electrophoretic buffer. The sulfur-selective electropherogram was determined at m/z 48 as 32S16O+ by using its reaction with O2 in the reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by 16O16O+ and 14N18O+ on 32S+ by detecting 32S+ as the oxide ion 32S16O+ at m/z 48, which is less interfered. The detection limit of various species studied was in the range of 0.047~0.058 £gg S/mL, which corresponded to the absolute detection limit of 1.3~1.6 pg S based on the injection volume of 27 nl. We determined the concentrations of selected sulfur-containing amino acids in urine and nutritive complement samples. The recovery was in the range of 92~128% for various species. Capillary electrophoresis-dynamic reaction cell inductively coupled plasma mass spectrometry (CE-DRC-ICP-MS) for the speciation of iron (III/II), vanadium (V/IV) and chromium (VI/III) is described. Two different CE migration modes were employed for separating the six metal ions using pre-capillary complexation. One is counter-electroosmotic mode in which iron (III/II) and vanadium (V/IV) ions were well separated using a 60 cm ¡Ñ 75 £gm i.d. fused silica capillary. The voltage was set at +22 kV and a 15 mmol/L tris(hydroxymethyl)aminomethane (Tris) buffer (pH 8.75) containing 0.5 mmol/L ethylenediaminetetraacetic acid (EDTA) and 0.5 mmol/L ortho-phenanthroline (phen) was used as the electrophoretic buffer. The other is co-electroosmotic mode in which chromium (VI/III) ions were well separated while the applied voltage was set at −22 kV and a 10 mmol/L ammonium citrate buffer (pH 7.7) containing 0.5 mmol/L diethylenetriaminepentaacetic acid (DTPA) and 0.01% polybrene was used as the electrophoretic buffer. The mass spectra were measured at m/z 51, 52 and 56 for V, Cr and Fe, respectively. The interfering polyatomic ions of 35Cl16O+, 40Ar12C+ and 40Ar16O+ on 51V+, 52Cr+ and 56Fe+ determination were reduced in intensity significantly by using NH3 as the reaction cell gas in the DRC. The detection limits were in the range of 0.1~0.5, 0.4~1.3 and 1.2~1.7 £gg/L for V, Cr and Fe, respectively. Applications of the method for the speciation of V, Cr and Fe in wastewater were demonstrated. The recoveries were in the range of 92~120% for various species. A capillary electrophoresis-inductively coupled plasma-mass spectrometric (CE-ICPMS) method for the speciation of six arsenic compounds, namely arsenite [As(III)], arsenate [As(V)], monomethyl arsonic acid, dimethylarsinic acid, arsenobetaine and arsenocholine is described. The separation has been achieved on a 70 cm length ¡Ñ 75 £gm ID fused-silica capillary. The electrophoretic buffer used was 15 mmol/L Tris (pH 9.0) containing 15 mmol/L sodium dodecyl sulfate (SDS), while the applied voltage was set at +22 kV. The arsenic species in biological tissues were extracted into 80% v/v methanol-water mixture, put in a closed centrifuge tube and kept in a water bath, using microwaves at 80¢J for 3 min. The extraction efficiencies of individual arsenic species added to the sample at 0.5 mg As/g level were between 96% and 107%, except for As(III), for which it was 89% and 77% for oyster and fish samples, respectively. The detection limits of the species studied were in the range 0.3~0.5 £gg As/L. The procedure has been applied for the speciation analysis of two reference materials, namely dogfish muscle tissue (NRCC DORM-2) and oyster tissue (NIST SRM 1566a), and two real-world samples.
299

Regulation of the cardiac isoform of the ryanodine receptor by S-adenosyl-l-methionine

Gaboardi, Angela Kampfer 08 November 2011 (has links)
Activity of the Ryanodine Receptor (RyR2) (aka cardiac Ca2+ release channel) plays a pivotal role in contraction of the heart. S-adenosyl-l-methionine (SAM) is a biological methyl group donor that has close structural similarity to ATP, an important physiological regulator of RyR2. This work provides evidence that SAM can act as a RyR2 regulatory ligand in a manner independent from its recognized role as a biological methyl group donor. RyR2 activation appears to arise from the direct interaction of SAM, via its adenosyl moiety, with the RyR2 adenine nucleotide binding sites. Because uncertainty remains regarding the structural motifs involved in RyR2 modulation by ATP and its metabolites, this finding has important implications for clarifying the structural basis of ATP regulation of RyR2. During the course of this project, direct measurements of single RyR2 activity revealed that SAM has distinct effects on RyR2 conductance. From the cytosolic side of the channel, SAM produced a single clearly resolved subconductance state. The effects of SAM on channel conductance were dependent on SAM concentration and membrane holding potential. A second goal of this work was to distinguish between the two possible mechanisms by which SAM could reduce RyR2 conductance: i) SAM interfering directly with ion permeation via binding within the conduction pathway (pore block), or ii) SAM binding a regulatory (or allosteric) site thereby stabilizing or inducing a reduced conductance conformation of the channel. It was determined that SAM does not directly interact with the RyR2 conduction pathway. To account for these observations an allosteric model for the effect of SAM on RyR2 conductance is proposed. According to this model, SAM binding stabilizes an inherent RyR2 subconductance conformation. The voltage dependence of the SAM related subconductance state is accounted for by direct effects of voltage on channel conformation which indirectly alter the affinity of RyR2 for SAM. Patterns in the transitions between RyR2 conductance states in the presence of SAM may provide insight into the structure-activity relationship of RyR2 which can aid in the development of therapeutic strategies targeting this channel.
300

Cyclic Nucleotide Phosphodiesterases (PDEs) in Smooth Muscle : Expression, Function and Mechanism

Zhai, Kui 20 November 2012 (has links) (PDF)
The aim of the present thesis was to characterize the role of the different families of phosphodiesterases (PDEs), the enzymes degrading 3'-5'-cyclic adenosine monophosphate (cAMP), in controlling the cAMP signalling in two distinct smooth muscle cells (SMCs), the rat aorta SMC (RASMCs) and the rat bladder SMC (RBSMCs).In cultured RASMCs, we firstly characterized the pattern of cAMP-PDE expression and activity. We then showed, by using a FRET-based cAMP sensor to explore cAMP signals in living cells, that PDE4 inhibition unmasks an effect of PDE1 and PDE3 on cytosolic cAMP hydrolyzis, whereas PDE3 and PDE4 act synergistically at the submembrane compartment. The mechanisms of this subcellular compartmentation need to be characterized. In neonatal RBSMCs, we showed that both PDE3 and PDE4 are involved in regulating the phasic contractions albeit through distinct mechanisms. PDE4 inhibition inhibits the carbachol-enhanced contractions through a protein kinase A-dependent pathway involving an increase in Ca2+ sparks frequency which activates BK channels to ultimately decrease Ca2+ transients, whereas PDE3 inhibition acts through a protein kinase G-dependent pathway through a still unknown mechanism.In conclusion, our work shows that in the SMC, the different cAMP-PDE families exhibit a specificity in their function and/or mechanism of action, thus participating to a subcellular signaling compartmentation.

Page generated in 0.0318 seconds