• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 401
  • 199
  • 91
  • 35
  • 30
  • 17
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1010
  • 180
  • 140
  • 112
  • 110
  • 78
  • 72
  • 70
  • 68
  • 66
  • 63
  • 60
  • 60
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Measuring transitional matrix elements using first-order perturbation theory in Coulomb excitation

Masango, Senamile Khethekile Ntombizothando January 2019 (has links)
Magister Scientiae - MSc / The aim of nuclear structure physics is to study the interplay between singleparticle and collective degrees of freedom in nuclei and to explain how nuclei get excited and decay under di erent external conditions, such as strong electric and magnetic elds. If nuclei absorb a large amount of energy and angular momentum, like in a scattering reaction when you bombard a target that is in the ground state with a projectile at high bombarding energies, the energy from the projectile gets transfered to the target and vice versa, hence both projectile and target may get excited. During the de-excitation process nuclei may release the energy in a form of electromagnetic radiation (gamma rays) which carries angular momentum. The atomic nucleus is a many-body system, whose structure is de ned in terms of interactions between protons and neutrons. In nature there are only around 300 stable isotopes [1]. They are all in their ground states (although some are in a low-energy excited isomeric state with a long lifetime). To study excited states in these nuclei one needs to provide energy to the system. In addition, there are some 3000 unstable nuclei, most of which do not exist in nature. Many have been produced and studied in research laboratories, and there could be more than 3000 other unstable nuclei that can in principle exist in astrophysical environments, but have not yet been synthesized on Earth [1].
152

TheRole of the Insular Cortex in Rodent Social Affective Behavior:

Rogers-Carter, Morgan M. January 2019 (has links)
Thesis advisor: John P. Christianson / In social species, animals must detect, evaluate and respond to the states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate such social information with environmental cues and internal physiology to general social behavioral responses via a process called social decision-making. The mechanisms and anatomical correlates of social decision-making, particularly those that allow behavioral responses to others’ emotional states, are not fully known. Therefore, the objective of this dissertation is to broaden the anatomical understanding of social decision-making by investigating the role of the insular cortex in social behaviors that depend upon others’ emotional state. Using a novel behavioral paradigm, I present causal evidence that implicates the insular cortex and its projections to the nucleus accumbens in social affective behavior. These findings are consistent with evidence from the literature that suggests insular cortex is positioned to convey sensory cues to social brain structures to produce flexible and appropriate behavioral responses to social affective cues. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.
153

Mesolimbic Dopamine Involvement in Pavlovian and Operant Approach Behaviors

Morvan, Cecile I. January 2010 (has links)
Thesis advisor: Jon C. Horvitz / Previous research has yielded conflicting results regarding the involvement of mesolimbic dopamine in Pavlovian and operant tasks. While there is abundant evidence that an operant lever press requires intact dopamine (DA) D1 transmission in the nucleus accumbens (ACB) and in the basolateral amygdala (BLA), there is conflicting evidence regarding the specific brain sites at which DA mediates a Pavlovian approach response. The present study was designed to compare the effects of ACB and BLA D1 receptor-blockade on an operant and Pavlovian task, while minimizing differences in behavioral response topography. Animals were trained on either a Pavlovian cued approach task or an operant cued nosepoke task. In the Pavlovian approach task, a tone signaled a pellet delivery to which animals responded with a head entry into a food compartment. In the operant nosepoke task, animals were trained to emit a nosepoke in response to the same tone, in order to trigger a pellet delivery. Bilateral microinfusions of the D1 antagonist SCH 23390 (0, 1 or 2 microgram/side) into either the ACB or the BLA produced a dose-dependent disruption of the operant nosepoke. In contrast, the Pavlovian cued approach response was unaffected by D1 antagonist microinfusions into either the ACB or the BLA. In addition, infusion of SCH 23390 into either site suppressed general locomotion. The results suggest a dissociation of the anatomical substrates mediating an operant nosepoke and a Pavlovian approach, despite similar response topographies. These findings are consistent with the notion that D1 activity at the ACB and BLA plays a role in the expression of operant responses, but not in the expression of Pavlovian approach responses. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.
154

Jaderná dynamika a interakce myozinu 1c / Nuclear dynamics and interactions of myosin 1c

Dzijak, Rastislav January 2012 (has links)
1. ABSTRACT Myosins are proteins that convert chemical energy stored in ATP into mechanical force that is applied on an actin filament. Nuclear myosin 1 (NM1) was the first myosin detected in the cell nucleus. Together with nuclear actin they were shown to play important roles in DNA transcription and chromatin remodeling. However, the molecular details of the NM1 functions are largely unknown. To expand our knowledge about this molecular motor we studied tissue expression, mechanism of nuclear localization and molecular interactions of this myosin motor. In the first part we examined the expression pattern of NM1 in various mouse tissues. We demonstrated that NM1 is present in cell nuclei of all mouse tissues examined except for cells in terminal stages of spermatogenesis. Quantitative PCR and western blots demonstrated that the expression of NM1 in tissues varies, with the highest levels in the lungs. NM1 is a nuclear isoform of earlier identified myosin 1c (Myo1c), which was described initially as a cytosolic, and plasma membrane associated protein. The only known difference between these two proteins was the presence of additional 16 amino acids at the N-terminus of NM1. Next we focused on the influence of NM1 domains, including the N-terminus, on the subcellular localization of this protein. We found...
155

Lokalizace a funkce fosfoinositidů v buněčném jádře / Localization and function of phosphoinositides in the cell nucleus

Kalasová, Ilona January 2016 (has links)
(ENGLISH) Phosphoinositides (PIs) are negatively charged glycerol-based phospholipids. Their inositol head can be phosphorylated at three positions generating seven differently phosphorylated species. Cytoplasmic phosphoinositides regulate membrane and cytoskeletal dynamics, vesicular trafficking, ion channels and transporters and generate second messengers. In the nucleus, PIs are implicated in pre-mRNA processing, DNA transcription and chromatin remodelling. However, their nuclear functions are still poorly understood. Here we focus on nuclear phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). We describe their localization and interaction with proteins involved in regulation of DNA transcription. PI(4)P localizes to nuclear membrane, nuclear speckles and nucleoplasm. The majority of nuclear PI(4)P is associated with chromatin and colocalizes with H3K4me2. PI(4,5)P2 localizes to nucleoli and nuclear speckles. Besides, 30 % of nuclear PI(4,5)P2 forms small nucleoplasmic PI(4,5)P2 islets. They have carbon rich core, which is probably formed by lipids, and are surrounded by proteins and nucleic acids. The active form of RNA polymerase II associates with PI(4,5)P2 islets and DNA is actively transcribed in the vicinity of PI(4,5)P2 islets. Moreover,...
156

Dopamine Action in the Nucleus Accumbens and Medial Preoptic Area and the Regulation of the Hormonal Onset of Maternal Behavior in Rats

Stolzenberg, Danielle Suzanne January 2009 (has links)
Thesis advisor: Michael Numan / Postpartum female rats immediately respond to biological or foster offspring with the display of maternal behavior. In contrast, females that are hysterectomized and ovariectomized on day 15 of pregnancy (15HO) and presented with pups 48 hours later show maternal behavior after 2-3 days of pup exposure. The natural onset of maternal behavior in postpartum females is mediated, in part, by the rise in estradiol just prior to birth. When 15HO rats are administered estradiol benzoate (EB) at the time of HO surgery, 48 hours prior to pup presentation, they show an almost immediate onset of maternal behavior. Presumably, EB administration functions to prime neural circuits which regulate maternal behavior such that these circuits respond to pup presentation with increased maternal responsiveness. Two important neural regions which have been shown to interact in order to promote responsiveness toward infant stimuli are the medial preoptic area (MPOA) and the nucleus accumbens (NA). The following series of studies were undertaken to examine how dopamine (DA) activity within these two important neural sites substitutes for the facilitatory effects of chronic (48 hours) EB stimulation of maternal behavior in 15HO rats. Study 1 investigates whether, in the absence of EB treatment, microinjection of dopamine receptor agonists into either NA or MPOA at the time of pup presentation stimulate maternal behavior in 15HO rats. Study 2 examines the underlying mechanism by which DA receptor stimulation of NA promotes the onset of maternal behavior in 15HO rats. Finally, Study 3 examines the relationship between DA receptor stimulation and estradiol stimulation in the facilitation of maternal responsiveness in 15HO rats. / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.
157

Protein nuclear transport and polyglutamine toxicity. / CUHK electronic theses & dissertations collection

January 2009 (has links)
Polyglutamine (polyQ) diseases are a group of progressive neurodegenerative disorders, which are caused by the expansion of an existing glutamine-coding CAG repeat in the coding region of disease genes. The cell nucleus is a major site of polyQ toxicity, and gene transcription is compromised in polyQ-induced neurodegeneration. Understanding the nuclear translocation of mutant polyQ proteins is therefore crucial to unfold the complex pathogenic mechanisms that underlie the neuronal toxicity of polyQ disease. The polyQ domain is the only common sequence found among different mutant disease proteins. Nuclear transport signals have been identified in some, but not all, polyQ disease proteins. The detection of those mutant polyQ proteins that carry no classical nuclear transport signal, but not their normal counterparts, in the cell nucleus suggests the existence of uncharacterized nuclear transport signals in mutant polyQ proteins. Thus, the objective of the present study is to elucidate the nuclear transport pathway(s) adopted by an expanded polyQ domain and determine its correlation with polyQ toxicity. / Through a series of genetic and biochemical studies in cell culture, mouse and transgenic Drosophila models, exportin-1 was found to modulate the nucleocytoplasmic localization of mutant polyQ protein and its toxicity. Further, mutant polyQ protein was also demonstrated to be a novel transport substrate of exportin-1. By promoting the nuclear export of mutant polyQ protein, exportin-1 suppressed polyQ toxicity by reducing the interference of mutant polyQ protein on gene transcription. It was found that the protein level of exportin-1 diminished in the normal ageing process, which would result in an exaggeration of nuclear mutant polyQ toxicity. Thus, the age-dependent decline of exportin-1 level, at least in part, accounts for the progressive degeneration observed in polyQ patients. Results obtained from this project first demonstrated that expanded polyQ domain is a nuclear export signal, and further provided mechanistic explanation of how protein nuclear transport receptors modulate polyQ toxicity. / Chan, Wing Man. / Source: Dissertation Abstracts International, Volume: 71-01, Section: B, page: 0113. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 189-203). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
158

Octupole and quadrupole structures in the N=88 nucleus 152Gd

Netshiya, Adivhaho Andrew January 2018 (has links)
>Magister Scientiae - MSc / The focus for this work is on 152Gd produced by the 150Sm( , 2n)152Gd reaction at a beam energy of 25 MeV. The nucleus has been previously studied for both low spin states and high spin states at di erent energies. The most recent work on 152Gd was done by S. P. Bvumbi using the 152Sm( , 4n)152Gd reaction at a beam energy of 45 MeV where she was able to populate low spin states and assign spins and parities to the levels as shown in Fig. 1.1. The nucleus 152Gd, with proton number Z=64 subshell closure, belongs to a set of isotones having N=88 in the transitional region with just 6 neutrons outside the N=82 closed shell and lies just before the N=90 permanently deformed region. The isotope 152Gd is in the transitional region, consequently its nuclear collective motion will quickly evolve from vibrational to rotational motion. The low lying K =0+2 bands in N=88 and 90 nuclei appear at low excitation energies and are poorly understood. Key to these studies is the crucial question about the legitimacy of the low lying K =0+2 bands being described as vibrations along the symmetry axis. The current work examines the K =0+2 band with the objective of providing more understanding. Previous studies of N=88 isotones saw consistent E1 transitions both from and to the K =0+2 bands and octupole bands, namely 144Ba, 146Ce, 148Nd, 150Sm and 154Dy nuclei. The experimental systematics of the low lying negative parity states in N=88 isotones are remarkably well reproduced by theoretical calculations of the quadrupole octupole coupling (QOC) modelas shown in Fig. 1.2.
159

Motivation : Definitioner, neurala mekanismer och nucleus accumbens roll i motivation / Motivation : Definitons, neural mechanisms and the role of nucleus accumbens in motivation

Wiberg, Anders January 2019 (has links)
Frågan om människans drivkrafter och vad som ligger bakom våra handlingar har en lång historia och ju mer man har försökt att förklara och definiera begreppet motivation desto mer komplext tycks det ha blivit. Den här uppsatsens syfte är att ge en förståelse till komplexiteten kring problematiken om begreppet motivation. Detta görs genom att belysa dess djupa rötter i filosofins och psykologins värld samt lyfta fram några av motivationsteorierna ur den omfattande breda litteraturen som skrivits om ämnet. Vidare genom att belysa vad den moderna neurovetenskapliga forskningen har tillfört i studierna om motivation. Resultatet visar på att de gamla klassiska motivationsteorierna än idag influerar på ämnet. Självbestämmandeteorin (SDT) visar på att det finns olika typer av motivation och att vi föds med tre psykologiska behov som ligger till grund för en individs intrinsiska och extrinsiska motivation. Den affektiva neurovetenskapen visar på att det finns en ömsesidig interaktion mellan kognition, affektion och beteende som baseras på djupa evolutionära emotionella rötter djupt in i det limbiska systemet. Bevis finns för att nucleus accumbens (NAc) spelar en viktig roll i val av handlingsalternativ som underlättar och effektiviserar målorienterat beteende samt har både exciterande och inhiberande funktion på beteende.
160

Sleep-dependent sensorimotor processing and network connectivity in the infant rat

Del Rio-Bermudez, Carlos 01 August 2018 (has links)
Early sensory experiences play a critical role in the activity-dependent development of the sensorimotor system. The sources of sensory input to the neonatal nervous system involve external stimulation (exafference) and sensory feedback arising from self-generated movements (reafference). In the perinatal period, reafference from twitches of the limbs and facial muscles during active (REM) sleep is a powerful driver of neural activity across the entire neuraxis. Thus, sleep-related twitches are thought to contribute to the activity-dependent development of sensorimotor networks. In this dissertation, we first aimed to identify a motor pathway for the generation of twitching. Using newborn rats at postnatal day (P) 8, we provide evidence that the red nucleus (RN; source of the rubrospinal tract) is involved in the production of twitching. In addition, we show that reafference from twitches drives neural activity in the RN, therefore suggesting that the RN is an important site for sensorimotor integration. Also, in the RN of P8 rats, twitch-related reafference triggers theta (4–7 Hz) oscillations. By P12, theta oscillations are expressed continuously and exclusively across bouts of active sleep. Synchronized neuronal oscillations comprise a fundamental mechanism by which distant neural structures establish and express functional connectivity. Thus, we next hypothesized that sleep-dependent theta oscillatory activity enables the expression of network connectivity between the RN and associated neural networks, such as the hippocampus. Simultaneous recordings from the hippocampus and RN at P12 show that theta oscillations in both structures are synchronized, co-modulated, and mutually interactive exclusively during active sleep. Lastly, we test the hypothesis that twitches drive synchronized oscillatory activity across functionally related sensory structures at early ages when the occurrence of oscillations largely depends on sensory input. Focusing on the cortico-hippocampal network at P8, we demonstrate that, unlike periods of wake-related movements or behavioral quiescence, twitching promotes coupled oscillatory activity at Beta2 frequency (~20-30 Hz). Altogether, the findings in this dissertation suggest that one of the functions of active sleep in early infancy is to provide a context for sensorimotor processing and for synchronizing activity within and between forebrain and brainstem structures. Consequently, any condition or manipulation that restricts active sleep can deprive the infant animal of substantial sensory experience, potentially resulting in atypical developmental trajectories.

Page generated in 0.0248 seconds