• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 13
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Social Regulation of Adult Neurogenesis in a Eusocial Mammal

Peragine, Diana 09 December 2013 (has links)
The present study examined social status and adult neurogenesis in the naked mole rat. These animals live in large colonies with a strict reproductive dominance hierarchy; one female and 1-3 males breed, while other members are subordinate and reproductively suppressed. We examined whether social status affects doublecortin (DCX; a marker for immature neurons) immunoreactivity in the dentate gyrus, piriform cortex (PCx), and basolateral amygdala (BLA) by comparing breeders to subordinates. We also examined subordinates removed from their colony and paired with opposite- or same-sex conspecifics for 6 months. Breeders had reduced DCX immunoreactivity in all areas, with BLA effects confined to females. Effects of housing condition were region-specific, with higher PCx DCX immunoreactivity observed in opposite- than same-sex paired subordinates regardless of gonadal status. The opposite pattern was observed in the BLA. Future work will clarify whether findings are attributable to status differences in stress, behavioural plasticity, or life stage.
2

Mesolimbic Dopamine Involvement in Pavlovian and Operant Approach Behaviors

Morvan, Cecile I. January 2010 (has links)
Thesis advisor: Jon C. Horvitz / Previous research has yielded conflicting results regarding the involvement of mesolimbic dopamine in Pavlovian and operant tasks. While there is abundant evidence that an operant lever press requires intact dopamine (DA) D1 transmission in the nucleus accumbens (ACB) and in the basolateral amygdala (BLA), there is conflicting evidence regarding the specific brain sites at which DA mediates a Pavlovian approach response. The present study was designed to compare the effects of ACB and BLA D1 receptor-blockade on an operant and Pavlovian task, while minimizing differences in behavioral response topography. Animals were trained on either a Pavlovian cued approach task or an operant cued nosepoke task. In the Pavlovian approach task, a tone signaled a pellet delivery to which animals responded with a head entry into a food compartment. In the operant nosepoke task, animals were trained to emit a nosepoke in response to the same tone, in order to trigger a pellet delivery. Bilateral microinfusions of the D1 antagonist SCH 23390 (0, 1 or 2 microgram/side) into either the ACB or the BLA produced a dose-dependent disruption of the operant nosepoke. In contrast, the Pavlovian cued approach response was unaffected by D1 antagonist microinfusions into either the ACB or the BLA. In addition, infusion of SCH 23390 into either site suppressed general locomotion. The results suggest a dissociation of the anatomical substrates mediating an operant nosepoke and a Pavlovian approach, despite similar response topographies. These findings are consistent with the notion that D1 activity at the ACB and BLA plays a role in the expression of operant responses, but not in the expression of Pavlovian approach responses. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.
3

Social Regulation of Adult Neurogenesis in a Eusocial Mammal

Peragine, Diana 09 December 2013 (has links)
The present study examined social status and adult neurogenesis in the naked mole rat. These animals live in large colonies with a strict reproductive dominance hierarchy; one female and 1-3 males breed, while other members are subordinate and reproductively suppressed. We examined whether social status affects doublecortin (DCX; a marker for immature neurons) immunoreactivity in the dentate gyrus, piriform cortex (PCx), and basolateral amygdala (BLA) by comparing breeders to subordinates. We also examined subordinates removed from their colony and paired with opposite- or same-sex conspecifics for 6 months. Breeders had reduced DCX immunoreactivity in all areas, with BLA effects confined to females. Effects of housing condition were region-specific, with higher PCx DCX immunoreactivity observed in opposite- than same-sex paired subordinates regardless of gonadal status. The opposite pattern was observed in the BLA. Future work will clarify whether findings are attributable to status differences in stress, behavioural plasticity, or life stage.
4

The Influence of the Basolateral Amygdala-medial Prefrontal Cortex Circuitry in Appetitive Cue Learning and Valuation

Keefer, Sara Elizabeth January 2018 (has links)
Thesis advisor: Gorica D. Petrovich / Environmental cues that are neutral in respect to hunger and feeding can come to predict food through Pavlovian appetitive conditioning. These learned cues can drive food seeking and eating independent of physiological hunger leading to overeating and obesity. However, the food outcome, and thus the value of the cues, can change due to environmental alterations. A change in the values of learned cues requires altering behavioral responses to accurately reflect the cue’s new outcome. This behavioral flexibility is necessary to respond appropriately to changes in the environment and, as such, is an adaptive trait. The aim of this dissertation was to determine critical neural mechanisms specifically within the basolateral amygdala (BLA) and also with its interactions with the medial prefrontal cortex (mPFC) during behavioral flexibility when outcomes of learned appetitive cues change using the appetitive reversal learning paradigm. The main focus was on the BLA (Chapter 2) and its connection with the mPFC (Chapters 3 and 4) since both of these areas are critical in appetitive cue learning and valuation and subsequent behavioral modifications. The first study in this dissertation examined if separate neuronal ensembles within the BLA respond to different learned cues, a cue that signals food availability and a cue that does not. Additionally, we investigated if these potentially distinct neuronal ensembles are necessary during periods of behavioral flexibility when the value of the specific learned cues are changed during reversal learning. We determined that there are distinct neuronal ensembles within the BLA that respond to different learned cues, and that the cue-specific ensembles are necessary for updating the value of each specific cue (Chapter 2). Next, we examined a projection target of the BLA, the mPFC, to determine if BLA-projecting neurons are activated during learning (Chapter 3). Using retrograde tract tracing combined with Fos detection, we found recruitment of the anterior BLA to prelimbic area of the mPFC across cue-food learning, signifying that the BLA can inform the mPFC of the value of learned cues. Then to establish that communication between the BLA and mPFC is necessary for cue value learning and updating (Chapter 4), we functionally disconnected communication between these regions and examined appetitive learning using discriminative conditioning, reversal learning, and devaluation paradigms. We found impairments in cue value recall and subsequent updating of the cues’ values during reversal learning. Together, these studies indicate the BLA may be important in informing the mPFC of the value of learned cues, and their interaction is critical to optimally guide behavioral responding. The findings from these experiments are valuable for our understanding of the neural mechanisms that motivate eating behavior under the control of learned food cues and to understand the mechanisms necessary for behavioral flexibility when the outcomes of learned cues are changed. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.
5

Dissecting the Functional Heterogeneity of Serotonergic Systems That Regulate Fear and Panic

Setubal Bernabe, Cristian 10 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Serotonin (5-HT) is heavily implicated in severe anxiety and trauma-related disor-ders, such as panic and post-traumatic stress disorders. Overall, site-specific pharmacolog-ical manipulations show that while 5-HT enhances anxiety-associated/avoidance behaviors in the amygdala, 5-HT inhibits panic-associated escape behaviors in the perifornical hypo-thalamus region (PeFR). Yet, our understanding of how specific serotonergic networks and co-transmitters regulate these conditions, but also other aspects of innate panic (e.g., car-dioexcitation or thermal response that occur during a flight or escape response) or condi-tioned fear behaviors is still elusive. Therefore, utilizing circuit-based gain- and loss-of-function approaches to selectively manipulate amygdala- and PeFR-projecting sero-tonergic systems, we hypothesize that specific serotonergic networks projecting to the amygdala and PeFR respectively enhance conditioned fear responses and attenuate innate panic-associated behaviors and physiological responses. There are two main chapters in this dissertation. In Chapter III, retrograde tracing revealed that the amygdala-projecting neurons from dorsal Raphe (DR) were almost exclusively serotonergic (92-95%) concen-trated in the dorsal/ventral (DRD/DRV) DR, with few non-serotonergic neurons. While selective lesioning of this network with saporin toxin (SAP) facilitated the extinction of conditioned fear behavior, selective optogenetic activation of amygdala-projecting DRD/DRV cell bodies using intersectional genetics reduced extinction of conditioned fear behavior and enhanced anxiety avoidance. In Chapter IV, retrograde tracing showed that the PeFR was innervated by equally selective serotonergic networks concentrated in the lateral wings DR (lwDR) and median Raphe (MR). Contrasting with the results from the amygdala-innervating 5-HT system, lesioning the PeFR-projecting serotonergic network from lwDR/MR was accompanied by reduced extinction of conditioned fear behavior, in-creased anxiety avoidance, and increased CO2-induced panic (elevated escape responses and enhanced cardioexcitation). Conversely, selective activation of lwDR/MR serotonergic terminals in the PeFR decreased anxiety-associated behaviors; inhibited CO2-induced panic, and induced unconditioned and conditioned place preferences. The circuit-based ap-proach data presented here show that amygdala- and PeFR-projecting 5-HT neurons com-prise distinct circuits underlying opposite roles enhancing anxiety/fear responses in the amygdala and dampening fear/panic responses in the PeFR. The identification of distinct circuits controlling anxiety, fear, and panic responses is a fundamental step towards the development of more effective therapies for psychiatric conditions such as anxiety and trauma-related disorders. / 2021-11-04
6

NMDAR-PSD95-nNOS Axis-Mediated Molecular Mechanisms in the Basolateral Amygdala Underlying Fear Consolidation

Patel, Jheel 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fear is an evolutionarily conserved response that can facilitate avoidance learning and promote survival, but excessive and persistent fear responses lead to development of phobias, generalized fear, and post-traumatic stress disorder. The primary goal of experiments in this dissertation is to determine the molecular mechanisms underlying formation of fear memories. The acquisition and consolidation of fear is dependent upon activation of N-methyl-D-aspartic acid receptors (NMDARs). Stimulation of NMDARs recruits neuronal nitric oxide synthase (nNOS) to the synaptic scaffolding protein, postsynaptic density protein 95 (PSD95), to produce nitric oxide (NO). Our laboratory has previously shown that disruption of the PSD95-nNOS interaction attenuates fear consolidation and impairs long-term potentiation of basolateral amygdala (BLA) neurons in a rodent model of auditory fear conditioning. However, the molecular mechanisms by which disrupting the PSD95-nNOS interaction attenuates fear consolidation are not well understood. Here, we used pharmacological and genetic approaches to study the effects underlying nNOS activity in the BLA during fear consolidation. During the early stage of fear memory consolidation (4-6 hours after fear acquisition), we observed increased α- Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated current and synaptosomal AMPAR GluR1 subunit trafficking in the BLA; while during the late stage (24h after fear acquisition), we detected a combination of enhanced AMPAR- and NMDAR-mediated currents, increased synaptosomal NMDAR NR2B subunit expression, and phosphorylation of synaptosomal AMPAR GluR1 and NMDAR NR2B subunits in the BLA. Importantly, we showed that pharmacological and genetic blockade of nNOS activity inhibits all of these glutamatergic synaptic plasticity changes in the BLA. Additionally, we discovered whole transcriptome changes in the BLA following fear consolidation. In the group with pharmacological inhibition of nNOS activity, however, gene expression levels resembled control-like levels. We also observed altered expression of multiple genes and identified the insulin-like growth factor system, D3/D4 dopamine receptor binding, and cGMP effects as key pathways underlying nNOSmediated consolidation of fear. Our results reveal nNOS-mediated, sequentially orchestrated synaptic plasticity changes facilitated by AMPA and NMDA receptors in the BLA during early and late stages of fear memory consolidation. We also report novel genetic targets and pathways in the BLA underlying NMDAR-PSD95-nNOS axis-mediated formation of fear memories.
7

Vocalization processing across amygdalar populations

Hazlett, Emily G. 25 July 2019 (has links)
No description available.
8

Neural mechanisms mediating persistent stress relief by comfort food

Christiansen, Anne M. 30 July 2010 (has links)
No description available.
9

Levels of Perineuronal Nets in the Basolateral Amygdala Are Correlated with Sex Differences in Fear Learning

Bals, Julia January 2017 (has links)
Thesis advisor: John P. Christianson / Trauma and exposure to extreme stressors greatly increases a person’s vulnerability to developing mental illnesses like post-traumatic stress disorder (PTSD). Patients with PTSD often have impaired fear and safety learning, and despite the fact that women are more than twice as likely to develop PTSD, much of the research on this disorder has relied on the use of male subjects. This paper will review potential contributors to the sex differences seen in PTSD and fear-related learning. Our group has found that female rats show greater fear discrimination abilities than their male counterparts, but show no difference in levels of safety learning. Analysis of specialized extracellular matrix structures called perineuronal nets (PNNs) revealed that females displayed a much higher density of PNNs in the basolateral amygdala (BLA) than males, but not in the prefrontal cortex (PFC). / Thesis (BS) — Boston College, 2017. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Psychology.
10

The Effects of Temporary Inactivation of the Basolateral Amygdala on the Maternal Behavior of Post-partum Rats

Gary, Anna J. January 2010 (has links)
Thesis advisor: Michael Numan / Maternal behavior is a primary social characteristic of mammals. By studying maternal behavior in rats, broader inferences can be made about the neural circuits that influence maternal behavior in other mammals, including humans. Maternal behavior of rats includes nest building, pup grooming, nursing, and pup retrieval. The projections from the medial preoptic area of the hypothalamus (MPOA) to the ventral tegmental area (VTA) of the mesolimbic dopamine system are known to regulate maternal behavior in post-partum rats. The aim of the present study was to examine how inhibition of the basolateral amygdala (BLA), an area that projects to the nucleus accumbens-ventral palldium (NA-VP) circuit of the mesolimbic dopamine system, bilaterally with muscimol (a GABA-A agonist) might interrupt the retrieval of pups by post-partum rats. Females injected with muscimol, but not those injected with saline, displayed significant deficits in retrieval behavior, suggesting that the BLA is a region important for the promotion of maternal behavior. The effects were also reversible, as all females displayed normal maternal behavior 24-hours post-injection. Follow-up studies should use asymmetric neuron-specific lesions of the BLA and the VP to show that the projections from the BLA to the VP are essential for maternal behavior. / Thesis (BA) — Boston College, 2010. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: College Honors Program. / Discipline: Psychology Honors Program. / Discipline: Psychology.

Page generated in 0.0939 seconds