Spelling suggestions: "subject:"cumber field sieve"" "subject:"1umber field sieve""
1 |
Generování polynomů pro číselné síto / Generating polynomials for number field sievePejlová, Anežka January 2016 (has links)
Title: Generating polynomials for number field sieve Author: Anežka Pejlová Department: Department of Algebra Supervisor: prof. RNDr. Aleš Drápal, CSc., DSc., Department of Algebra Abstract: The topic of this thesis is mainly focused on Kleinjung algorithm for generating polynomials within the General Number Field Sieve, which is the most efficient factorization algorithm nowadays. Commonly used consecu- tions are explained with respect to the fact whether they can be rigorously proven or they are based only on heuristic assumptions. Another contribution of this thesis is the attached implementation of Kleinjung algorithm develo- ped as a part of the Number Field Sieve project led by the Department of Algebra. The appropriateness of some heuristics used in the theory beyond the Kleinjung algorithm is supported by empirical data obtained from this implementation. Keywords: Number field sieve, Kleinjung algorithm
|
2 |
An Introduction to the General Number Field SieveBriggs, Matthew Edward 23 April 1998 (has links)
With the proliferation of computers into homes and businesses and the explosive growth rate of the Internet, the ability to conduct secure electronic communications and transactions has become an issue of vital concern. One of the most prominent systems for securing electronic information, known as RSA, relies upon the fact that it is computationally difficult to factor a "large" integer into its component prime integers. If an efficient algorithm is developed that can factor any arbitrarily large integer in a "reasonable" amount of time, the security value of the RSA system would be nullified. The General Number Field Sieve algorithm is the fastest known method for factoring large integers. Research and development of this algorithm within the past five years has facilitated factorizations of integers that were once speculated to require thousands of years of supercomputer time to accomplish. While this method has many unexplored features that merit further research, the complexity of the algorithm prevents almost anyone but an expert from investigating its behavior. We address this concern by first pulling together much of the background information necessary to understand the concepts that are central in the General Number Field Sieve. These concepts are woven together into a cohesive presentation that details each theory while clearly describing how a particular theory fits into the algorithm. Formal proofs from existing literature are recast and illuminated to clarify their inner-workings and the role they play in the whole process. We also present a complete, detailed example of a factorization achieved with the General Number Field Sieve in order to concretize the concepts that are outlined. / Master of Science
|
3 |
Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον / Implementation of the integer factorization algorithm number field sieve (NFS) on parallel computersΜπακογιάννης, Χρήστος 21 September 2010 (has links)
Η διείσδυση των υπολογιστών, τόσο στα σπίτια μας, όσο και κυρίως στις επιχειρήσεις, κατά τα τελευταία χρόνια, καθώς επίσης και ο συνεχώς αυξανόμενος ρυθμός χρήσης του διαδικτύου, έχουν καταστήσει την ανάγκη για ασφαλείς ηλεκτρονικές επικοινωνίες και συναλλαγές κάτι παραπάνω από επιτακτική. Ένα από τα κυρίαρχα, σήμερα, συστήματα ασφαλούς ανταλλαγής δεδομένων είναι ο αλγόριθμος RSA, η ασφάλεια του οποίου βασίζεται στο γεγονός ότι είναι πολύ δύσκολο να παραγοντοποιήσουμε έναν «μεγάλο» αριθμό στους πρώτους παράγοντές του. Ο RSA αλγόριθμος θεωρείται αρκετά ασφαλής, αν βέβαια χρησιμοποιούμε κατάλληλο, για τα σημερινά δεδομένα, μέγεθος κλειδιού. Παρόλα αυτά, σε περίπτωση που βρεθεί κάποιος αποδοτικός αλγόριθμος που να μπορεί σε «λογικό» χρόνο να παραγοντοποιήσει οποιονδήποτε μεγάλο ακέραιο, τότε αυτομάτως η ασφάλεια του αλγορίθμου αυτού έχει παραβιαστεί και θα πρέπει να στραφούμε σε εναλλακτικές μεθόδους προστασίας της πληροφορίας.
Ο πιο αποδοτικός σήμερα αλγόριθμος παραγοντοποίησης μεγάλων ακεραίων είναι ο Number Field Sieve. Η έρευνα που έχει γίνει πάνω σε αυτόν τον αλγόριθμο, έχει οδηγήσει σε σημαντική πρόοδο και έχει καταστήσει, πλέον, εφικτή την παραγοντοποίηση ακεραίων που υπό άλλες προϋποθέσεις θα απαιτούσε χιλιάδες χρόνια από cpu time σε supercomputers. Αν και ακόμη και σήμερα υπάρχουν αρκετά σημεία που θα μπορούσαν να βελτιωθούν στον αλγόριθμο, κάνοντάς τον ακόμη πιο αποδοτικό, ωστόσο η πολυπλοκότητά του αποτρέπει αρκετούς να ασχοληθούν με την βελτίωσή του. Με την εργασία αυτή θα προσπαθήσουμε αρχικά να διασαφηνίσουμε όλες τις πληροφορίες που απαιτούνται για την σωστή κατανόηση της λειτουργίας του αλγορίθμου. Θα γίνει λεπτομερής περιγραφή των διαφόρων βημάτων του αλγορίθμου και θα δοθεί αναλυτικό παράδειγμα παραγοντοποίησης. Τέλος, θα παρουσιαστεί η παράλληλη υλοποίησή του αλγορίθμου, η οποία μπορεί να εκτελεστεί τόσο σε supercomputer, όσο και σε cluster υπολογιστών που επικοινωνούν μεταξύ τους με χρήση του MPI. / The recent advances in computer science, in combination with the proliferation of computers in home and businesses and the explosive growth rate of the internet transactions, have increased the needs for secure electronic communications. One of the dominant systems of secure data transactions is the RSA algorithm. RSA’ s security relies on the fact that it is computationally difficult to factor a “large” integer into its component prime integers. RSA is considered secure as long as we use proper key length. However, if an efficient algorithm is developed that can factor any arbitrarily large integer in a “reasonable” amount of time, then the whole security of the algorithm will be broken, and we will have to use alternative methods to secure our systems.
Today, the fastest known method for factoring large integers is the General Number Field Sieve algorithm. Research and development of the algorithm has enabled the factorization of integers that were once thought to require thousands of years of CPU time to accomplish. While there are still many possible optimizations that could increase the algorithm’s efficiency, however the complexity of the algorithm prevents many researchers from attempting to improve it. In this master thesis we present the information needed to understand the principles upon which the algorithm is based. The discrete steps of the algorithm are described in full detail, as well as a detailed factorization example, in order to enlighten the way each step works. Finally a parallel implementation is presented, able to be executed on a supercomputer or a computer cluster, with the use of MPI.
|
4 |
Síto v číselném tělese pro diskrétní logaritmus / Number Field Sieve for Discrete LogarithmGodušová, Anna January 2016 (has links)
Many of today's cryptographic systems are based on the discrete logarithm problem, e.g. the Diffie-Hellman protocol. The number field sieve algorithm (NFS) is the algorithm solving the problem of factorization of integers, but latest works show, it can be also applied to the discrete logarithm problem. In this work, we study the number field sieve algorithm for discrete logarithm and we also compare the NFS for discrete logarithm with the NFS for factoriza- tion. Even though these NFS algorithms are based on the same principle, many differences are found. 1
|
5 |
Η μέθοδος παραγοντοποίησης ακεραίων αριθμών number field sieve : θεωρία και υλοποίηση / The integer factorization algorithm number field sieve : theory and implementationΚαραπάνος, Νικόλαος 21 September 2010 (has links)
Πολλά κρυπτογραφικά σχήματα δημόσιου κλειδιού βασίζονται στο γεγονός ότι είναι υπολογιστικά δύσκολο να παραγοντοποιήσουμε μεγάλους ακέραιους αριθμούς. Ο ταχύτερος, και ταυτόχρονα πολυπλοκότερος, κλασσικός αλγόριθμος που είναι γνωστός μέχρι σήμερα για την παραγοντοποίηση ακεραίων μήκους άνω των 110 δεκαδικών ψηφίων είναι ο General Number Field Sieve (GNFS). Ο αλγόριθμος αυτός είναι ο καρπός πολλών ετών έρευνας, κατά τη διάρκεια της οποίας παράγονταν ολοένα και ταχύτεροι αλγόριθμοι για να καταλήξουμε μέχρι στιγμής στον αλγόριθμο GNFS.
Πρωταρχικός σκοπός της παρούσης μεταπτυχιακής εργασίας είναι η παρουσίαση του θεωρητικού μαθηματικού υπόβαθρου πάνω στο οποίο βασίζεται ο GNFS καθώς και η ακολουθιακή υλοποίηση της βασικής εκδοχής του αλγορίθμου. Ως γλώσσα υλοποίησης επιλέχθηκε η C++. Η υλοποίηση έγινε σε συνεργασία με τον συμφοιτητή μου και αγαπητό φίλο Χρήστο Μπακογιάννη, όπου στα πλαίσια της μεταπτυχιακής του εργασίας πραγματοποιήθηκε η μεταφορά της ακολουθιακής υλοποίησης του αλγορίθμου σε παράλληλο κατανεμημένο περιβάλλον χρησιμοποιώντας το Message Passing Interface (MPI). Ο πηγαίος κώδικας της υλοποίησης καθώς και σχετικές πληροφορίες υπάρχουν online στη σελίδα http://kmgnfs.cti.gr.
Σημειώνεται πως για την ευκολότερη και απρόσκοπτη ανάγνωση της εργασίας αυτής, ο αναγνώστης θα πρέπει να έχει ένα βαθμό εξοικείωσης με βασικές έννοιες της θεωρίας αριθμών, της αλγεβρικής θεωρίας αριθμών και της γραμμικής άλγεβρας. / Many public-key cryptosystems build their security on our inability to factor very large integers. The General Number Field Sieve (GNFS) is the most efficient, and at the same time most complex, classical known algorithm for factoring integers larger than 110 digits. This algorithm is the result of many years of research, during which, faster and faster algorithms were developed finally winding up to the development of the GNFS.
The main purpose of this master thesis is the presentation of the mathematical ideas, on which the GNFS was developed, as well as a sequential implementation of the basic version of the algorithm. C++ was the language of choice. The implementation took place in collaboration with my colleague and dear friend Christos Bakogiannis, where as part of his master thesis, a distributed implementation of the algorithm using Message Passing Interface (MPI) was also developed. The source code of the implementations is publicly available and can be found online at http://kmgnfs.cti.gr.
It is presumed that the reader is familiar with basic concepts of number theory, algebraic number theory and linear algebra.
|
6 |
Distributed System for Factorisation of Large NumbersJohansson, Angela January 2004 (has links)
<p>This thesis aims at implementing methods for factorisation of large numbers. Seeing that there is no deterministic algorithm for finding the prime factors of a given number, the task proves rather difficult. Luckily, there have been developed some effective probabilistic methods since the invention of the computer so that it is now possible to factor numbers having about 200 decimal digits. This however consumes a large amount of resources and therefore, virtually all new factorisations are achieved using the combined power of many computers in a distributed system. </p><p>The nature of the distributed system can vary. The original goal of the thesis was to develop a client/server system that allows clients to carry out a portion of the overall computations and submit the result to the server. </p><p>Methods for factorisation discussed for implementation in the thesis are: the quadratic sieve, the number field sieve and the elliptic curve method. Actually implemented was only a variant of the quadratic sieve: the multiple polynomial quadratic sieve (MPQS).</p>
|
7 |
Large Scale Implementation Of The Block Lanczos AlgorithmSrikanth, Cherukupally 03 1900 (has links)
Large sparse matrices arise in many applications, especially in the major problems of Cryptography of factoring integers and computing discrete logarithms. We focus attention on such matrices called sieve matrices generated after the sieving stage of the algorithms for integer factoring. We need to solve large sparse system of equations Bx = 0, with sieve matrices B arising in this context.
The traditional Gaussian elimination, with a cubic run time, is not efficient for handling such matrices. Better algorithms for such input matrices are the quadratic runtime algorithms based on Block Lanczos(BL) or Wiedemann techniques. Of these two, BL is even better for large integer factoring algorithms. We carry out an efficient implementation of the Block Lanczos algorithm for finding the vectors in the null space of the the sieve matrix. We report our test results using our implementation for matrices of sizes up to 106.
We plan to use this implementation in our ongoing projects on factoring the large RSA challenge integers of sizes 640 bits(called RSA-640) and beyond. So it is useful to exploit possible parallelism. We propose a scheme for parallelizing certain steps of the Block Lanczos method, taking advantage of structural properties of the sieve matrix. The sizes of matrices arising in integer factoring context are quite large. Hence we also discuss some techniques that are used to reduce the size of the sieve matrix. We also consider the last stage of the NFS Algorithm for finding square roots of large algebraic numbers and outline a sketch of our algorithm.
|
8 |
Distributed System for Factorisation of Large NumbersJohansson, Angela January 2004 (has links)
This thesis aims at implementing methods for factorisation of large numbers. Seeing that there is no deterministic algorithm for finding the prime factors of a given number, the task proves rather difficult. Luckily, there have been developed some effective probabilistic methods since the invention of the computer so that it is now possible to factor numbers having about 200 decimal digits. This however consumes a large amount of resources and therefore, virtually all new factorisations are achieved using the combined power of many computers in a distributed system. The nature of the distributed system can vary. The original goal of the thesis was to develop a client/server system that allows clients to carry out a portion of the overall computations and submit the result to the server. Methods for factorisation discussed for implementation in the thesis are: the quadratic sieve, the number field sieve and the elliptic curve method. Actually implemented was only a variant of the quadratic sieve: the multiple polynomial quadratic sieve (MPQS).
|
9 |
Analysis Of A Sieving Heuristic For The Number Field Sieve And Design Of Low-Correlation CDMA SequencesGarg, Gagan 06 1900 (has links)
In this thesis, we investigate in detail, certain important problems in cryptography and coding theory.
In the first part of this thesis, we discuss the number field sieve and compare the two ways in which the sieving step is implemented -one method using the line sieve and the other using the lattice sieve. We discuss why the lattice sieve performs better than the line sieve in the presence of large primes -this has not been attempted before.
In the second part of this thesis, we design low-correlation CDMA sequences over the Quadrature Amplitude Modulation (QAM) alphabet. The sequences proposed in this thesis have the lowest value of the maximum correlation parameter as compared to any other family in the literature.
In the third part of this thesis, we design large families of optimal two-dimensional optical orthogonal codes for optical CDMA. The size of these codes is larger than any other code in the literature.
|
10 |
Integer Factorization on the GPU / Integer Factorization on the GPUPodhorský, Jiří January 2014 (has links)
This work deals with factorization, a decomposition of composite numbers on prime numbers and possibilities of its parallelization. It summarizes also the best known algorithms for factoring and most popular platforms for the implementation of these algorithms on the graphics card. The main part of the thesis deals with the design and implementation of hardware acceleration current fastest algorithm on the graphics card by using the OpenCL framework. Subsequently, the work provides a comparison of speeds accelerated algorithm implemented in this work with other versions of the best known algorithms for factoring, processed serially. In conclusion, the work discussed length of RSA key needed for safe operation without the possibility of breaking in real time interval.
|
Page generated in 0.0812 seconds