Spelling suggestions: "subject:"cumber theory"" "subject:"1umber theory""
391 |
Propriété de Bogomolov pour les modules de Drinfeld à multiplications complexesBauchère, Hugues 16 September 2013 (has links) (PDF)
Notons A:=Fq[T] et k:=Fq(T). Soient φ un A-module de Drinfeld défini sur la clôture algébrique de k et h sa hauteur canonique. Soient K/k une extension finie et L/K une extension galoisienne infinie. Par analogie avec la terminologie utilisée par E. Bombieri et U. Zannier, on dit que L a la propriété (B,φ) s'il existe une constante strictement positive qui minore h sur L privé des points de torsion de φ. S. David et A. Pacheco ont montré que pour tout module de Drinfeld φ, la clôture abélienne de K a la propriété (B,φ). Dans cette thèse nous généralisons, dans le cadre des modules de Drinfeld à multiplications complexes, ce résultat.
|
392 |
Higher Derivatives of the Hurwitz Zeta FunctionMusser, Jason 01 August 2011 (has links)
The Riemann zeta function ζ(s) is one of the most fundamental functions in number theory. Euler demonstrated that ζ(s) is closely connected to the prime numbers and Riemann gave proofs of the basic analytic properties of the zeta function. Values of the zeta function and its derivatives have been studied by several mathematicians. Apostol in particular gave a computable formula for the values of the derivatives of ζ(s) at s = 0. The Hurwitz zeta function ζ(s,q) is a generalization of ζ(s). We modify Apostolʼs methods to find values of the derivatives of ζ(s,q) with respect to s at s = 0. As a consequence, we obtain relations among certain important constants, the generalized Stieltjes constants. We also give numerical estimates of several values of the derivatives of ζ(s,q).
|
393 |
Finding Zeros of Rational Quadratic FormsShaughnessy, John F 01 January 2014 (has links)
In this thesis, we introduce the notion of quadratic forms and provide motivation for their study. We begin by discussing Diophantine equations, the field of p-adic numbers, and the Hasse-Minkowski Theorem that allows us to use p-adic analysis determine whether a quadratic form has a rational root. We then discuss search bounds and state Cassels' Theorem for small-height zeros of rational quadratic forms. We end with a proof of Cassels' Theorem and suggestions for further reading.
|
394 |
There and Back Again: Elliptic Curves, Modular Forms, and L-FunctionsArnold-Roksandich, Allison F 01 January 2014 (has links)
L-functions form a connection between elliptic curves and modular forms. The goals of this thesis will be to discuss this connection, and to see similar connections for arithmetic functions.
|
395 |
On Z_p-extensions of real abelian number fieldsNuccio Mortarino Majno Di Capriglio, Fillipo A.E. 21 May 2009 (has links) (PDF)
Cette thèse s'articule autour de la Conjecture de Greenberg en théorie d'Iwasawa, qui prédit que les nombres de classes des corps de nombres appartenants à une Z_p extension d'un corps totalement réel sont bornés. On discute des critères de validité de la Conjecture et une application de la Conjecture à l'arithmétique des Unités Cyclotomiques.
|
396 |
The Self Power Map and its Image Modulo a PrimeAnghel, Catalina Voichita 02 August 2013 (has links)
The self-power map is the function from the set of natural numbers to itself which sends the number $n$ to $n^n$. Motivated by applications to cryptography, we consider the image of this map modulo a prime $p$. We study the question of how large $x$ must be so that $n^n \equiv a \bmod p$ has a solution with $1 \le n \le x$, for every residue class $a$ modulo $p$. While $n^n \bmod p$ is not uniformly distributed, it does appear to behave in certain ways as a random function. We give a heuristic argument to show that the expected $x$ is approximately ${p^2\log \phi(p-1)/\phi(p-1)}$, using the coupon collector problem as a model. Rigorously, we prove the bound $x <p^{2-\alpha}$ for sufficiently large $p$ and a fixed constant $\alpha > 0$ independent of $p$, using a counting argument and exponential sum bounds. Additionally, we prove nontrivial bounds on the number of solutions of $n^n \equiv a \bmod p$ for a fixed residue class $a$ when $1 \le n \le x$, extending the known bounds when $1 \le n \le p-1$.
|
397 |
The Self Power Map and its Image Modulo a PrimeAnghel, Catalina Voichita 02 August 2013 (has links)
The self-power map is the function from the set of natural numbers to itself which sends the number $n$ to $n^n$. Motivated by applications to cryptography, we consider the image of this map modulo a prime $p$. We study the question of how large $x$ must be so that $n^n \equiv a \bmod p$ has a solution with $1 \le n \le x$, for every residue class $a$ modulo $p$. While $n^n \bmod p$ is not uniformly distributed, it does appear to behave in certain ways as a random function. We give a heuristic argument to show that the expected $x$ is approximately ${p^2\log \phi(p-1)/\phi(p-1)}$, using the coupon collector problem as a model. Rigorously, we prove the bound $x <p^{2-\alpha}$ for sufficiently large $p$ and a fixed constant $\alpha > 0$ independent of $p$, using a counting argument and exponential sum bounds. Additionally, we prove nontrivial bounds on the number of solutions of $n^n \equiv a \bmod p$ for a fixed residue class $a$ when $1 \le n \le x$, extending the known bounds when $1 \le n \le p-1$.
|
398 |
Ground state number fluctuations of trapped particles /Tran, Muoi N. Bhaduri, Rajat K. January 1900 (has links)
Thesis (Ph.D.)--McMaster University, 2004. / Supervisor: R.K. Bhaduri. Includes bibliographical references (p. 127-133). Also available via World Wide Web.
|
399 |
Evaluation of certain infinite series using theorems of John, Rademacher and Kronecker /Haley, Colette Sharon, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2005. / Includes bibliographical references (p. 111-114). Also available in electronic format on the Internet.
|
400 |
Räumliche Vorstellung und mathematisches ErkenntnisvermögenVerloren van Themaat, Willem Anthony. January 1900 (has links)
Vol. 1: the author's thesis. / Summary in Esperanto, English, and Dutch. Bibliography: v. 1, p. [130]-131.
|
Page generated in 0.1228 seconds