Spelling suggestions: "subject:"cumber theory"" "subject:"1umber theory""
381 |
From Numbers To Digits: On The Changing Role Of Mathematics In ArchitectureKoc, Betul 01 June 2008 (has links) (PDF)
This study is a critical reconsideration of architecture&rsquo / s affiliation with mathematics and geometry both as practical instrument and theoretical reference. The thesis claims that mathematics and its methodological structure provided architects with an ultimate foundation and a strong reference outside architecture itself ever since the initial formations of architectural discourse. However, the definitive assumptions and epistemological consequences of this grounding in mathematical clarity, methodological certainty and instrumental precision gain a new insight with the introduction of digital technologies. Since digital technologies offer a new formation for this affiliation either with their claim of a better geometric representation or mathematical controllability of physical reality (space), the specific focus on these newly emerging technologies will be developed within a theoretical frame presenting the significant points of mathematics in architecture.
|
382 |
Estimates for discrepancy and Calderon-Zygmund operatorsVagharshakyan, Armen 11 May 2010 (has links)
No description available.
|
383 |
A study of discrepancy results in partially ordered setsHoward, David M. 20 May 2010 (has links)
In 2001, Fishburn, Tanenbaum, and Trenk published a pair of papers that introduced the notions of linear and weak discrepancy of a partially ordered set or poset. Linear discrepancy for a poset is the least k such that for any ordering of the points in the poset there is a pair of incomparable points at least distance k away in the ordering. Weak discrepancy is similar to linear discrepancy except that the distance is observed over weak labelings (i.e. two points can have the same label if they are incomparable, but order is still preserved). My thesis gives a variety of results pertaining to these properties and other forms of discrepancy in posets. The first chapter of my thesis partially answers a question of Fishburn, Tanenbaum, and Trenk that was to characterize those posets with linear discrepancy two. It makes the characterization for those posets with width two and references the paper where the full characterization is given. The second chapter introduces the notion of t-discrepancy which is similar to weak discrepancy except only the weak labelings with
at most t copies of any label are considered. This chapter shows that determining a poset's t-discrepancy is NP-Complete. It also gives the t-discrepancy for the disjoint sum of chains and provides a polynomial time algorithm for determining t-discrepancy of semiorders. The third chapter presents another notion of discrepancy namely total discrepancy which minimizes the average distance between incomparable elements. This chapter proves that finding this value can be done in polynomial time unlike linear discrepancy and t-discrepancy. The final chapter answers another question of Fishburn, Tanenbaum, and Trenk that asked to characterize those posets that have equal linear and weak discrepancies. Though determining the answer of whether the weak discrepancy and linear discrepancy of a poset are equal is an NP-Complete problem, the set of minimal posets that have this property are given. At the end of the thesis I discuss two other open problems not mentioned in the previous chapters that relate to linear discrepancy. The first asks if there is a link between a poset's dimension and its linear discrepancy. The second refers to approximating linear discrepancy and possible ways to do it.
|
384 |
Anabelian Intersection TheorySilberstein, Aaron 19 December 2012 (has links)
Let F be a field finitely generated and of transcendence degree 2 over \(\bar{\mathbb{Q}}\). We describe a correspondence between the smooth algebraic surfaces X defined over \(\bar{\mathbb{Q}}\) with field of rational functions F and Florian Pop’s geometric sets of prime divisors on \(Gal(\bar{F}/F)\), which are purely group-theoretical objects. This allows us to give a strong anabelian theorem for these surfaces. As a corollary, for each number field K, we give a method to construct infinitely many profinite groups \(\Gamma\) such that \(Out_{cont} (\Gamma)\) is isomorphic to \(Gal(\bar{K}/K)\), and we find a host of new categories which answer the Question of Ihara/Conjecture of Oda-Matsumura. / Mathematics
|
385 |
Constructing Simultaneous Diophantine Approximations Of Certain Cubic NumbersHinkel, Dustin January 2014 (has links)
For K a cubic field with only one real embedding and α, β ϵ K, we show how to construct an increasing sequence {m_n} of positive integers and a subsequence {ψ_n} such that (for some constructible constants γ₁, γ₂ > 0): max{ǁm_nαǁ,ǁm_nβǁ} < [(γ₁)/(m_n^(¹/²))] and ǁψ_nαǁ < γ₂/[ψ_n^(¹/²) log ψ_n] for all n. As a consequence, we have ψ_nǁψ_nαǁǁψ_nβǁ < [(γ₁ γ₂)/(log ψ_n)] for all n, thus giving an effective proof of Littlewood's conjecture for the pair (α, β). Our proofs are elementary and use only standard results from algebraic number theory and the theory of continued fractions.
|
386 |
Relèvements cristallins de représentations galoisiennesMuller, Alain 04 November 2013 (has links) (PDF)
Dans cette thèse, on démontre que certaines représentations du groupe de Galois absolu d'une extension finie de $Q_p$ à coefficients dans $\bar{F_p}$ se relèvent en des représentations cristallines à coefficients dans $\bar{Z_p}$.
|
387 |
Variations on Artin's Primitive Root ConjectureFELIX, ADAM TYLER 11 August 2011 (has links)
Let $a \in \mathbb{Z}$ be a non-zero integer. Let $p$ be a prime such that $p \nmid a$. Define the index of $a$ modulo $p$, denoted $i_{a}(p)$, to be the integer $i_{a}(p) := [(\mathbb{Z}/p\mathbb{Z})^{\ast}:\langle a \bmod{p} \rangle]$. Let $N_{a}(x) := \#\{p \le x:i_{a}(p)=1\}$. In 1927, Emil Artin conjectured that
\begin{equation*}
N_{a}(x) \sim A(a)\pi(x)
\end{equation*}
where $A(a)>0$ is a constant dependent only on $a$ and $\pi(x):=\{p \le x: p\text{ prime}\}$. Rewrite $N_{a}(x)$ as follows:
\begin{equation*}
N_{a}(x) = \sum_{p \le x} f(i_{a}(p)),
\end{equation*}
where $f:\mathbb{N} \to \mathbb{C}$ with $f(1)=1$ and $f(n)=0$ for all $n \ge 2$.\\
\indent We examine which other functions $f:\mathbb{N} \to \mathbb{C}$ will give us formul\ae
\begin{equation*}
\sum_{p \le x} f(i_{a}(p)) \sim c_{a}\pi(x),
\end{equation*}
where $c_{a}$ is a constant dependent only on $a$.\\
\indent Define $\omega(n) := \#\{p|n:p \text{ prime}\}$, $\Omega(n) := \#\{d|n:d \text{ is a prime power}\}$ and $d(n):=\{d|n:d \in \mathbb{N}\}$. We will prove
\begin{align*}
\sum_{p \le x} (\log(i_{a}(p)))^{\alpha} &= c_{a}\pi(x)+O\left(\frac{x}{(\log x)^{2-\alpha-\varepsilon}}\right) \\
\sum_{p \le x} \omega(i_{a}(p)) &= c_{a}^{\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right) \\
\sum_{p \le x} \Omega(i_{a}(p)) &= c_{a}^{\prime\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right)
\end{align*}
and
\begin{equation*}
\sum_{p \le x} d(i_{a}) = c_{a}^{\prime\prime\prime}\pi(x)+O\left(\frac{x}{(\log x)^{2-\varepsilon}}\right)
\end{equation*}
for all $\varepsilon > 0$.\\
\indent We also extend these results to finitely-generated subgroups of $\mathbb{Q}^{\ast}$ and $E(\mathbb{Q})$ where $E$ is an elliptic curve defined over $\mathbb{Q}$. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2011-08-03 10:45:47.408
|
388 |
Generalization of Ruderman's Problem to Imaginary Quadratic FieldsRundle, Robert John 13 April 2012 (has links)
In 1974, H. Ruderman posed the following question: If $(2^m-2^n)|(3^m-3^n)$, then does it follow that $(2^m-2^n)|(x^m-x^n)$ for every integer $x$? This problem is still open. However, in 2011, M. R. Murty and V. K. Murty showed that there are only finitely many $(m,n)$ for which the hypothesis holds. In this thesis, we examine two generalizations of this problem. The first is replacing 2 and 3 with arbitrary integers $a$ and $b$. The second is to replace 2 and 3 with arbitrary algebraic integers from an imaginary quadratic field. In both of these cases we have shown that there are only finitely many $(m,n)$ for which the hypothesis holds. To get the second result we also generalized a result by Bugeaud, Corvaja and Zannier from the integers to imaginary quadratic fields. In the last half of the thesis we use the abc conjecture and some related conjectures to study some exponential Diophantine equations. We study the Pillai conjecture and the Erd\"{o}s-Woods conjecture and show that they are implied by the abc conjecture and that when we use an effective version, very clean bounds for the conjectures are implied. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2012-04-13 12:04:14.252
|
389 |
Variations of Li's criterion for an extension of the Selberg classDroll, ANDREW 09 August 2012 (has links)
In 1997, Xian-Jin Li gave an equivalence to the classical Riemann hypothesis,
now referred to as Li's criterion, in terms of the non-negativity of a particular
infinite sequence of real numbers. We formulate the analogue of Li's criterion as
an equivalence for the generalized quasi-Riemann hypothesis for functions in an
extension of the Selberg class, and give arithmetic formulae for the corresponding
Li coefficients in terms of parameters of the function in question. Moreover, we
give explicit non-negative bounds for certain sums of special values of polygamma
functions, involved in the arithmetic formulae for these Li coefficients, for a wide class of functions. Finally, we discuss an existing result on correspondences between
zero-free regions and the non-negativity of the real parts of finitely many Li
coefficients. This discussion involves identifying some errors in the original source work which seem to render one of its theorems conjectural. Under an appropriate
conjecture, we give a generalization of the result in question to the case of Li coefficients corresponding to the generalized quasi-Riemann hypothesis. We also
give a substantial discussion of research on Li's criterion since its inception, and
some additional new supplementary results, in the first chapter. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2012-07-31 13:14:03.414
|
390 |
Entiers friables en progressions arithmétiques, et applicationsDrappeau, Sary 19 November 2013 (has links) (PDF)
Dans cette thèse, on s'intéresse à certaines propriétés additives des entiers n'ayant pas de grand facteurs premiers. Un entier est dit y-friable si tous ses facteurs premiers sont inférieurs à y. Leur étude est de plus en plus délicate à mesure que y est petit par rapport à la taille des entiers impliqués. On s'intéresse tout d'abord au comptage des solutions à l'équation a+b=c en entiers y-friables a, b et c On étudie ensuite la valeur moyenne de certaines fonctions arithmétiques sur les entiers friables translatés, de la forme n-1 où n est y-friable. La méthode du cercle permet de ramener la première question à l'étude de sommes de caractères de Dirichlet tordus par une exponentielle sur les entiers friables, qui sont ensuite évaluées en utilisant des outils classiques d'analyse harmonique, et en faisant intervenir la méthode du col. Les premier et deuxième chapitres étudient la situation respectivement avec et sans l'hypothèse de Riemann généralisée. Les troisième et quatrième chapitres sont consacrés à la seconde question, qui se ramène à l'étude de la répartition des entiers friables en moyenne dans les progressions arithmétiques. Cela met en jeu des sommes de caractères de Dirichlet sur les entiers friables, ainsi que le grand crible. Dans le dernier chapitre, la méthode de dispersion est employée pour étudier le cas particulier du nombre moyen de diviseurs des entiers friables translatés.
|
Page generated in 0.0665 seconds