• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 90
  • 27
  • 14
  • 11
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 526
  • 526
  • 103
  • 103
  • 89
  • 82
  • 71
  • 50
  • 45
  • 45
  • 43
  • 43
  • 39
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Crustal Seismic Anisotropy and Structure from Textural and Seismic Investigations in the Cycladic Region, Greece

Cossette, Élise January 2015 (has links)
In the first article, the seismic properties for a suite of rocks along the West Cycladic Detachment System (Greece) are calculated, using Electron backscatter diffraction (EBSD) measurements and the minerals’ elastic stiffness tensors. Muscovite and glaucophane well defined crystallographic preferred orientation increases the seismic anisotropy. Maximum Pwave velocities have the same orientation as the Miocene extension and maximum S-wave anisotropy is subhorizontal, parallel with mineral alignment, suggesting strong radial anisotropy with a slow subvertical axis of symmetry. In the second article, teleseismic receiver functions are calculated for an array of stations in the Cyclades and decomposed into back-azimuth harmonics to visualise the variations in structure and anisotropy across the array. Synthetic receiver functions are modeled using the first order structural observations of seismic discontinuities and EBSD data. They indicate 5% of anisotropy with slow symmetry axis in the upper crust, and demonstrate the importance of rock textural constraints in seismic velocity profile interpretation.
182

Development and application of a CFD model of laser metal deposition

Ibarra Medina, Juansethi Ramses January 2013 (has links)
Laser metal deposition is one of the most versatile methods in the expanding field of additive manufacturing. Its outstanding advantage is its capability to process a variety of metallic materials for the freeform fabrication of objects having sound mechanical properties. The process is used in applications of rapid manufacturing, components repair and surface coating. During recent years, modelling has been increasingly used to study and improve the laser metal deposition process. However, most models have focused on analysing individual stages of the deposition process and thus have not thoroughly dealt with the occurrence of mutually-influencing phenomena. This work presents a new numerical model that, starting from the simulation of powder particles in the deposition head, integrates the important phenomena and interactions that govern the dynamics of a powder stream and a deposition melt pool, within a single model for the first time.The resulting model is comprehensive enough to allow the prediction of the morphology of deposited tracks and structures and the heat flows during their creation; as well as the flexibility to simulate, in principle, any deposition shape. The model has been demonstrated using the settings of an actual laser metal deposition system, and has been applied to study clad formation in the deposition of single tracks, layers, walls and simple three-dimensional structures. Moreover, the model has been used to study the formation of irregularities and excessive mass deposition. A new sensor-less deposition control technique based on the simulation and testing of different deposition strategies prior to actual deposition, is proposed. As a demonstration of this control technique, the model has also been used to study the case where excessive deposition develops at intersecting or cornered tracks. Improved deposition strategies have been tested using the model and applied to real deposits. A two fold improvement in layer height control has been achieved in the case of cornered layers.The outcome of the work presented in this thesis can be applied in further studies and prediction of laser deposited shapes for real applications. Furthermore, it can be potentially used for improvement of the laser metal deposition technology through the simulation of deposition strategies prior to actual processing.
183

Robustness of connections to concrete-filled steel tubular columns under fire during heating and cooling

Elsawaf, Sherif Ahmed Elkarim Ibrahim Soliman January 2012 (has links)
Joint behaviour in fire is currently one of the most important topics of research in structural fire resistance. The collapse of World Trade Center buildings and the results of the Cardington full-scale eight storey steel framed building fire tests in the UK have demonstrated that steel joints are particularly vulnerable during the heating and cooling phases of fire. The main purpose of this research is to develop robust joints to CFT columns that are capable of providing very high rotational and tying resistances to make it possible for the connected beam to fully develop catenary action during the heating phase of fire attack and to retain integrity during the cooling phase of fire attack. This research employed the general finite element software ABAQUS to numerically model the behaviour of restrained structural subassemblies of steel beam to concrete filled tubular (CFT) columns and their joints in fire. For validation, this research compared the simulation and test results for 10 fire tests previously conducted at the University of Manchester. It was envisaged that catenary action in the connected beams at very large deflections would play an important role in ensuring robustness of steel framed structures in fire. Therefore, it was vital that the numerical simulations could accurately predict the structural behaviour at very large deflections. In particular, the transitional behaviour of the beam from compression to catenary action presented tremendous difficulties in numerical simulations due to the extremely high rate of deflection increase. This thesis will explain the methodology of a suitable simulation method, by introducing a pseudo damping factor. The comparison between the FE and the experimental results demonstrates that the 3-D finite element model is able to successfully simulate the fire tests. The validated ABAQUS model was then applied to conduct a thorough set of numerical studies to investigate methods of improving the survival temperatures under heating in fire of steel beams to concrete filled tubular (CFT) columns using reverse channel connection. This study investigated five different joint types of reverse channel connection: extended endplate, flush endplate, flexible endplate, hybrid flush/flexible endplate and hybrid extended/flexible endplate. The connection details investigated include reverse channel web thickness, bolt diameter and grade, using fire-resistant (FR) steel for different joint components (reverse channel, end plate and bolts) and joint temperature control. The effects of changing the applied beam and column loads were also considered. It is concluded that by adopting some of the joint details to improve the joint tensile strength and deformation capacity, it is possible for the beams to develop substantial catenary action to survive very high temperatures. This thesis also explains the implications on fire resistant design of the connected columns in order to resist the additional catenary force in the beam. The validated numerical model was also used to perform extensive parametric studies on steel framed structures using concrete filled tubular (CFT) columns with flexible reverse channel connection and fin plate connection to find means of reducing the risk of structural failure during cooling. The results lead to the suggestion that in order to avoid connection fracture during cooling, the most effective and simplest method would be to reduce the limiting temperature of the connected beam by less than 50°C from the limiting temperature calculated without considering any axial force in the beam.
184

Groundwater assessment and sustainable management of the coastal alluvial aquifers in Namib Desert, Namibia: Omdel Aquifer as case study

Matengu, Brian Munihango January 2020 (has links)
Philosophiae Doctor - PhD / The study addressed the groundwater assessment and sustainable management of the coastal alluvial aquifers in Namib Desert, the Omaruru River Delta Aquifer (Omdel Aquifer) was used as a case study. Sustainable utilization of groundwater in parts of hyper-arid Sub-Saharan Africa, like the Namib Desert, is always a challenge due to lack of resources and data. Understanding of hydrogeological characteristics of the Omaruru Delta Aquifer System is a pre-requisite for the management of groundwater supply in the Central Namib area (Namib Desert). For the Omdel Aquifer in the Omaruru catchment, Namibia, issues to investigate include the lack of information on the geology and hydrogeological setting, the hydraulic properties and geometry of the aquifer at the inflow and outflow sections, groundwater recharge conditions upstream of the aquifer, and the impact of artificial recharge.
185

Groundwater assessment and sustainable management of the coastal alluvial aquifers in Namib Desert, Namibia: Omdel Aquifer as case study

Matengu, Brian Munihango January 2020 (has links)
Philosophiae Doctor - PhD / The study addressed the groundwater assessment and sustainable management of the coastal alluvial aquifers in Namib Desert, the Omaruru River Delta Aquifer (Omdel Aquifer) was used as a case study. Sustainable utilization of groundwater in parts of hyper-arid Sub-Saharan Africa, like the Namib Desert, is always a challenge due to lack of resources and data. Understanding of hydrogeological characteristics of the Omaruru Delta Aquifer System is a pre-requisite for the management of groundwater supply in the Central Namib area (Namib Desert). For the Omdel Aquifer in the Omaruru catchment, Namibia, issues to investigate include the lack of information on the geology and hydrogeological setting, the hydraulic properties and geometry of the aquifer at the inflow and outflow sections, groundwater recharge conditions upstream of the aquifer, and the impact of artificial recharge. Omdel Aquifer occurs in a desert environment with less than 20 mm of rainfall per annum, it’s regarded to receive no direct groundwater recharge from rainfall, only from occasional (inconsistent) flooding of the Omaruru River, due to periodic thunderstorms in the upstream catchment. Since the Omdel Aquifer does not receive direct recharge from rainfall, an artificial recharge scheme was implemented to augment the water supply. One of the objectives of the study is to integrate artificial recharge with hydrogeological understanding of the Omdel Aquifer to establish a conceptual framework for assessment of groundwater recharge and discharge, water chemistry and balanced water supply.
186

Reinforcement and Bonded Block Modelling

Skarvelas, Georgios Aristeidis January 2021 (has links)
The objective of this master’s thesis is to evaluate the use of Bonded Block Modelling (BBM) in 3DEC software combined with hybrid rock bolts, for three different cases. These cases included the laboratory rock bolt case, the shearing case and the blocky rock mass case. 3DEC is a Distinct Element Method (DEM) numerical software which can be used to simulate both continuum and discontinuum media in 3D. The Bonded Block Model in 3DEC can be used to simulate a rock mass as bonded polyhedral elements. The BBM is a relatively new numerical modelling technique. Earlier studies have focused mainly on laboratory test cases and less on field scale studies. The laboratory rock bolt test was introduced by Hoek and the main idea was to describe the way that rock bolts work. Four different rock bolt spacing designs were simulated and one unsupported model, in order to validate Hoek’s results. The diameter of the blocks was 15 cm while the zones were modelled with length of 5 cm. The tunnel on the shearing case was excavated at the depth of 1500 m. For the stress field, the in-situ stresses of Kiirunavaara mine were considered. The tunnel on the blocky case was excavated at the depth of 30 m and a gravitational stress field was assumed. The shearing model as well as the blocky model, were simulated on a quasi-3D model. The zone length for both cases was 0.1 m. In both cases, a discontinuum non-BBM was modelled first and then, a discontinuum BBM with different rock UCS values was simulated. The discontinuum BBM on the shearing case was simulated for rock UCS of 200, 100, and 50 MPa, while on the blocky case, it was simulated for rock UCS of 50 MPa. The Mohr – Coulomb constitutive model was selected for all three modelling cases. The conclusions of this work were the following: –       The laboratory rock bolt model validated the results of Hoek. Hoek suggested that rock bolt spacing less than three times the average rock piece diameter would be sufficient to produce positive results. The stabilization of the rock pieces as well as the forming of the compression zone were achieved when this equation was satisfied. The geometry of the stabilized material as well as the compression zone, were also correct. –       The discontinuum BBM on the shearing case with intact rock UCS of 200 MPa, produced similar results as the discontinuum non-BBM. This indicates that BBM can be applied for these cases and produce reliable results. The displacement of the fault was expected to be higher than the resulting values. The discontinuum BBM with reduced rock strength (100 MPa and 50 MPa) resulted in rock mass fragmentation. However, the fragmented rock pieces did not detach from the rock mass as the displacement values were not high enough.   –       The discontinuum BBM on the blocky case with intact rock UCS of 50 MPa, produced similar results as the discontinuum non-BBM. There were two discontinuities that affected the smooth transition of the displacement/stress results on the different blocks. The fragmentation of the rock mass due to the existence of the discontinuities did not produce any further rock mass movements.   –       The interaction between rock mass and rock bolts was evident in any modelling case. For the laboratory rock bolt model, the hybrid bolts design was vital for producing correct results. For the shearing model, the hybrid bolts were subjected to shearing movements due to fault movements. In the blocky model, the bolts in the roof of the tunnel were subjected to axial displacements, due to the existence of blocks. The recommendations for further work were the following: –       The hybrid bolts in the laboratory rock bolt test were pretensioned only in the beginning of the computation phase. In reality, the tensioned bolts act at every moment and not only in the beginning. However, it would be interesting to see if the results are similar with continuously tensioned hybrid bolts. It is anticipated that the constantly tensioned hybrid bolts should be able to keep the compressive zones with high values throughout the whole cycling process. Thus, it is suggested for future modellers that this case could be modelled with continuously tensioned hybrid bolts. –       The installation of rock bolts in the shear case as well as in the blocky case, was at the exact same time as the tunnel was excavated.  This is not realistic fact because it is impossible to install the rock bolts exactly the same time as the tunnel excavated. Thus, it is suggested that those two cases could be modelled in the future with more focus on the stress relaxation factor.
187

An Investigation of the breakage process of particles : With help of experimental results and discrete element methods

Bashiry, Ronni January 2021 (has links)
In this study the breakage mechanics of brittle glass marbles was investigated. The pro-cess was to firstly investigate them in laboratory environment. The marbles or specimens was loaded until a crushing breakage occurred in a single point load test called Single Sphere Point load test in this document. From the test we could derive the crushing load, the deformation and strain, the tensile strength and other parameters needed for the second part of this work. Namely the numerical modelling, here we investigated the specimen with the Discrete Element method or DEM for shorts. The software used was an open sourced software created in MATLAB called DICE2D. Since the software was developed to only include the mathematical part of the numerical model several re-coding processes were needed, with other words the creation of add-ons to the software. The add-ons were automatic code created in Python where the user now are able to create a geometrical model for the specimen that the software can interpret. There were two add-ons created in order to generate a geometry, called the circumference method and the random generation method, i.e. different methods of creating a geometry. The first method, the circumference method creates circumferences filled with smaller particles with the same radii, then moves a step inward to the specimens center and fills another circumference until the center is reached. The second method, the random method generates particles positioned randomly inside the specimen with a random radii, created such that the radius of the particles is chosen with an interval, were the user can choose the smallest and the largest particle radius. It was found that both these add-ons were of great use with different purposes in mind. The circumference method was able to create a brittle material where the deformations were low. The random method also created a brittle material but since the particles were randomly positioned there also was empty space created such that the deformations were larger than the one found in the laboratory environment, since the empty space between the particles was closed before the plastic deformation could occur. Hence the second method of generation is more relevant for concrete and rock mechanics since in these cases this is the actual process, where the micro-cracks first closes then the elastic and plastic deformation occurs [Martin, 1993]. The first method, the circumference method is of great use when investigating the elastic deformations since here the particles are in contact. Thus creating the scenario for granular particles, In this thesis however the circumference method was used in order to create a solid specimen. For future use this add-on should be used in order such that each particle simulates an actual grain. The results found with both of these methods follows the results found in the laboratory test for the crushing load. But the incremental increase of force when the load is applied on the specimen was not able to be simulated. It is believed that the software is having difficulties to simulate brittle material due to the small deformations and the large loads.
188

Návrh PPO na zvolené části toku / Design of flood protection

Rajnoch, Dalibor January 2015 (has links)
The diploma thesis copes with the evaluation of status quo and further proposal for a flood control arrangements for the river Dřevnice (Zlín district). The evaluation as such has been made by the hydraulic calculation of flow alongside 2D numeric model - SMS-TUFLOW software was used for these calculations and sub-calculations. Based on the results as evaluated by numerical model, the proposal for a flood control arrangements has been made and is further available within the document. Last not least, the utilization of the aforementioned arrangements was measured and described.
189

Kinematic Analysis, Numerical Modeling, and Design Optimization of Helical External Gear Pumps

Xinran Zhao (5930489) 16 January 2020 (has links)
<p>With their advantages of low-cost, high-reliability and simplicity, external gear pumps (EGPs) are popular choices in many applications, such as mobile hydraulic control system, fuel injection, and liquid transportation system, to name a few. Like other positive displacement machines, EGPs are characterized by a flow non-uniformity, which is given by the gear meshing and results in vibrations and noises. With increasing demands for low-noise components required by modern fluid-power systems, new designs of external gear machines with less noise emission and lower pulsation production are highly desired by the industry. </p><p><br></p><p>To satisfy these demands, there are several new-generation gear pump designs that have been realized by the industry and already commercialized. However, the research from both academia on external gear pumps are still primarily focused traditional involute gear pumps, while state-of-the-art research on these new-generation external gear pumps are highly lacked. Also for the most novel designs recently released to the market, their designs still have large margin to improve, as some of the physics inside these gear machines are not well understood and formulated. The goal of this research is to fill in this gap, by gain understanding of the relations between design features and actual flow generated by such novel designs, and provide general methods of analysis and design for efficient and silent units. </p><p><br></p><p>To achieve this goal, this PhD dissertation presents a comprehensive approach of analysis for external gear pumps, with the emphasis on the new-generation helical gear pumps. The discussion covers a large variety of aspects for gear pump design and analysis, including: the analysis on the gear profile design and meshing, the displacement-chamber geometric modeling, and the kinematic-flow analysis. They are followed by a dynamic simulation model covering the dynamics of fluids, forces, and micro-motions, together with simulation results that provides the insights into the physics of new-generation gear machines. Multiple experimental results are provided, which show the validity of the simulation models by matching the pressure ripple measurement and the volumetric efficiencies. Furthermore, a linearized analysis on the ripple source of gear pumps are described, in order to provide the connection and understanding of the pump-generated ripple to the higher-level system analysis, which is also missing from the past academia research. In addition, the some of the models are utilized in optimization studies. These optimization results show the potentials of using the proposed approach of analysis to improve the existing designs as well as development of more efficient and silent units.</p><div><br></div>
190

Pull-out of hooked end steel fibres : experimental and numerical study

Mpanga-A-Kangaj, Christian January 2013 (has links)
Abstract The reinforcement of concrete with steel fibres changes the failure of the composite material from catastrophic brittle failure to pseudo-ductile behaviour as a result of crack-bridging by the fibres, and the additional work which is absorbed by fibre pull-out. A good understanding of the properties of the fibre-reinforced concrete depends on an understanding of the fibre pull-out process. The main aim of the current study is to investigate, both experimentally and numerically, the pull-out behaviour of a single hooked end steel fibre from epoxy matrix, where epoxy was chosen to replace concrete in order to enable visualisation of the pull-out process. The experimental and numerical results both contribute to the development of a physical understanding of the mechanism of pull-out. Experimental studies included the evaluation of the mechanical properties of hooked end steel fibre and epoxy matrix by means of tensile tests, the manufacturing of pull-out specimens consisting of a single hooked end steel fibre embedded in epoxy matrix, and the experimental characterisation of the fibre pull-out. The significant features (peaks and minima) of the load vs. displacement graph were correlated to stills taken from a video of the pull-out process, in which the plastic deformation of the fibre is evident. Small deformations (spalling) were also observed in the matrix. A model is proposed for the mechanisms which interact during the pull-out process. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.1005 seconds