Spelling suggestions: "subject:"numerische mathematik / algorithmus"" "subject:"numerische mathematik / baumalgorithmus""
1 |
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte ElektrodynamikLöcse, Frank 17 March 2004 (has links) (PDF)
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte Elektrodynamik im Wintersemester 2002/03 für den Studiengang Physik
und den Bakkalaureusstudiengang Computational Science
|
2 |
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte ElektrodynamikLöcse, Frank 18 March 2004 (has links) (PDF)
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte Elektrodynamik im Wintersemester 2003/04 für den Studiengang Physik und den Bakkalaureusstudiengang Computational Science
|
3 |
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte ElektrodynamikLöcse, Frank 26 August 2005 (has links) (PDF)
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte Elektrodynamik im Wintersemester 2004/05 für den Studiengang Physik und den Bakkalaureusstudiengang Computational Science
|
4 |
Fast solvers for degenerated problemsBeuchler, Sven 11 April 2006 (has links) (PDF)
In this paper, finite element discretizations of the
degenerated operator
-ω<sup>2</sup>(y) u<sub>xx</sub>-ω<sup>2</sup>(x)u<sub>yy</sub>=g
in the unit square are investigated, where the
weight function satisfies ω(ξ)=ξ<sup>α</sup>
with α ≥ 0.
We propose two multi-level methods in order to
solve the resulting system of linear algebraic
equations. The first method is a multi-grid
algorithm with line-smoother.
A proof of the smoothing property is given.
The second method is a BPX-like preconditioner
which we call MTS-BPX preconditioner.
We show that the upper eigenvalue bound of the
MTS-BPX preconditioned system matrix grows
proportionally to the level number.
|
5 |
Stable evaluation of the Jacobians for curved trianglesMeyer, Arnd 11 April 2006 (has links) (PDF)
In the adaptive finite element method, the solution of a p.d.e. is approximated
from finer and finer meshes, which are controlled by error estimators. So,
starting from a given coarse mesh, some elements are subdivided a couple of
times. We investigate the question of avoiding instabilities which limit this
process from the fact that nodal coordinates of one element coincide in more
and more leading digits. In a previous paper the stable calculation of the
Jacobian matrices of the element mapping was given for straight line triangles,
quadrilaterals and hexahedrons. Here, we generalize this ideas to linear and
quadratic triangles on curved boundaries.
|
6 |
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte ElektrodynamikLöcse, Frank 17 March 2004 (has links)
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte Elektrodynamik im Wintersemester 2002/03 für den Studiengang Physik
und den Bakkalaureusstudiengang Computational Science
|
7 |
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte ElektrodynamikLöcse, Frank 18 March 2004 (has links)
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte Elektrodynamik im Wintersemester 2003/04 für den Studiengang Physik und den Bakkalaureusstudiengang Computational Science
|
8 |
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte ElektrodynamikLöcse, Frank 26 August 2005 (has links)
Übungen zur Vorlesung Theoretische Physik III: Elektrodynamik/Computergestützte Elektrodynamik im Wintersemester 2004/05 für den Studiengang Physik und den Bakkalaureusstudiengang Computational Science
|
9 |
Fast solvers for degenerated problemsBeuchler, Sven 11 April 2006 (has links)
In this paper, finite element discretizations of the
degenerated operator
-ω<sup>2</sup>(y) u<sub>xx</sub>-ω<sup>2</sup>(x)u<sub>yy</sub>=g
in the unit square are investigated, where the
weight function satisfies ω(ξ)=ξ<sup>α</sup>
with α ≥ 0.
We propose two multi-level methods in order to
solve the resulting system of linear algebraic
equations. The first method is a multi-grid
algorithm with line-smoother.
A proof of the smoothing property is given.
The second method is a BPX-like preconditioner
which we call MTS-BPX preconditioner.
We show that the upper eigenvalue bound of the
MTS-BPX preconditioned system matrix grows
proportionally to the level number.
|
10 |
Stable evaluation of the Jacobians for curved trianglesMeyer, Arnd 11 April 2006 (has links)
In the adaptive finite element method, the solution of a p.d.e. is approximated
from finer and finer meshes, which are controlled by error estimators. So,
starting from a given coarse mesh, some elements are subdivided a couple of
times. We investigate the question of avoiding instabilities which limit this
process from the fact that nodal coordinates of one element coincide in more
and more leading digits. In a previous paper the stable calculation of the
Jacobian matrices of the element mapping was given for straight line triangles,
quadrilaterals and hexahedrons. Here, we generalize this ideas to linear and
quadratic triangles on curved boundaries.
|
Page generated in 0.4144 seconds