• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 67
  • 67
  • 55
  • 22
  • 16
  • 12
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Assessment of Agricultural Nutrient Pollution to Lake Erie from the Maumee and Sandusky Watersheds: Analyzing Trends in Hydrology, Nutrient Loading, and Policy Using a Statistical Approach

Saltos, Theodore Nicholas 18 October 2018 (has links)
No description available.
52

Uncertainty in water quality monitoring, data analysis and modelling – and a Buddhist contemplation on its suffering

Jung, Hoseung 10 October 2023 (has links)
Die Unsicherheiten bei der Beobachtung und Modellierung der Nährstoffverfügbarkeit und des Nährstoffflusses erschweren das Verständnis von Nährstoffkreislauf und Nährstofftransportprozessen und die Vorhersage des Verhaltens von Nährstoffen. Diese Arbeit beginnt mit einer Literaturüberblick über Arten und Quellen von Unsicherheiten bei der Beobachtung und Modellierung von Nährstoffen in Gewässern. Basierend auf dieser Überblick werden drei Fallstudien zur Beobachtung und Modellierung von Nährstoffen unter Berücksichtigung von Unsicherheiten vorgestellt. In der ersten Studie wurden die Unsicherheiten verschiedener Inferenzmethoden zur Klassifizierung des Gewässergüte in Bezug auf den gesamten reaktiven Phosphor (TRP) mit hochaufgelösten Daten aus landwirtschaftlichen Einzugsgebieten bewertet. In der zweiten Studie wurden die in den hochauflösenden Daten beobachteten Konzentrations-Abfluss (C-Q) Hysteresen mit einem empirischen Modell formuliert, um TRP-Transferereignisse zu charakterisieren. Die Quelle und Pfade von Nährstoffübertragungen wurden aus den Ergebnissen abgeleitet, um Entscheidungen im Wassermanagement zu unterstützen. Die Konzentration-Abfluss-Temperatur (C-Q-T) Beziehung wurde für Nitrat (NO3) in einem von Borkenkäferbefall betroffenen Waldeinzugsgebiet untersucht. Die zeitlichen Variationen der Parameter eines einfachen mechanistischen Modells informierten über die Entwicklung der hydrobiochemischen Prozesse als Reaktion auf die natürliche Störung. In einem interdisziplinären Essay, der diesen Fallstudien folgt, wurde eine buddhistische Perspektive eingenommen und diskutiert, worin die grundsätzlichen Ursachen für das Leiden unter Unsicherheit in der Wissenschaft liegen, sowie Möglichkeiten, Wissenschaft mit Selbstreflexion, Mitgefühl und Frieden zu betreiben. In den Schlussfolgerungen wird eine Kontemplation über die Erfahrung, mit der Unsicherheit in der hydrologischen Wissenschaft in dieser Dissertation präsentiert. / Uncertainty in monitoring and modelling availability and flux of nutrient pollutants obscures understanding of nutrient cycle and transport processes and prediction of nutrient behaviours. This thesis starts with a literature review of types and sources of uncertainty in monitoring and modelling of the nutrients in waters. Based on this review, three study cases of monitoring quantities and modelling behaviours of the nutrients with the considerations of uncertainty are presented. In the first study, the uncertainties of different inference methods for classifying physico-chemical status in terms of total reactive phosphorus (TRP) were assessed based on high-resolution data from agricultural catchments. In the second study, concentration-discharge (C-Q) hystereses observed in the high-resolution data were formularised with an empirical model and to characterise TRP transfer events at the sub-hourly scale. The sources and pathways of nutrient transfers were inferred from the transfer event characteristics to inform major targets for water management measures. In the third study, the C-Q relationship was further researched for nitrate (NO3) at a bi-weekly to monthly frequency in a forest catchment affected by bark beetle infestation. The temporal variations of the parameters of a simple mechanistic model describing the concentration-discharge-temperature (C-Q-T) relationship informed the evolution of catchment-scale hydrological and biogeochemical processes in response to the natural disturbance. In an interdisciplinary essay following the case studies, a Buddhist perspective on fundamental causes of the suffering around uncertainty in science and ways to pursue science with self-reflection, compassion and peacefulness were discussed. Contemplations on the experience of confronting the uncertainty in the hydrological science of this thesis are also presented in the conclusions.
53

Nutrient and sediment movements from soil to surface water in a forested watershed and two agricultural fields

Langlois, Jacques January 2003 (has links)
In North America, the acceleration of the eutrophication of surface waters due to nutrient pollution is still present. Soil studies have not entirely succeeded in linking nutrient and sediment losses to field hydrology because relationships between discharge and dissolved ions/sediments are complicated by a hysteresis effect which has been only described qualitatively. The objective of this thesis was to better understand the effects of hydrology on N, P, and sediment transfer from agricultural and forest soils to surface waters. This was done by developing a technique, called the H index, to quantify the hysteretic behaviour of ion and sediment transport in stream/overland water. The chemical and sediment concentrations in a stream of a forested watershed in the Sierra Nevada during snowmelt and in overland runoff of two agricultural fields during rain events in the Montreal area were examined. In the stream of the forested watershed, H indices for suspended sediment increased (looser hysteresis loop) with the availability of sediments and the lag between peaks in suspended sediment concentrations and discharge. In agricultural fields, nutrient concentrations increased with time during each event with presence of counterclockwise and clockwise hysteresis. The hysteretic behaviour of suspended sediments was not significantly related with either prior soil moisture content or rainfall characteristics. In order to simultaneously monitor P and N in the stream and soils of the forested watershed, a laboratory study was conducted to investigate the efficacy of various mixedbed exchange resins in absorbing dissolved organic and inorganic N and P. Results showed that mixed-bed resin was adequate for characterizing P on a short-time scale but longer exposure periods were required for N. Results from the resin exchange reveal the possibility that the spring time pulse of NOs'-N in stream water was due to the melting of the snowpack.
54

Nutrient and sediment movements from soil to surface water in a forested watershed and two agricultural fields

Langlois, Jacques January 2003 (has links)
No description available.
55

The effects of on-site sewage treatment and disposal systems on the relief canals of Indian River County, the St. Sebastian River, and the central Indian River lagoon

Unknown Date (has links)
Effluent from on-site sewage treatment and disposal systems (OSTDS) is generally known to impact groundwaters and surface waters with nitrogen (N) and phosphorus (P) and other contaminants. Little research has quantified this problem along the Indian River Lagoon (IRL), especially in Indian River County (IRC) where there are 26,660 active systems. This study assessed the effects of OSTDS on contamination of surface and groundwaters along three urbanized canals and the St. Sebastian River in IRC, all of which flow into the Central IRL. Multiple lines of evidence were used to define the source of the nutrient loadings including the novel approach of using the artificial sweetener, sucralose, as an indicator of human sewage impact. Results indicate that areas with high densities of OSTDS are contributing N to surface waters and elevating N:P ratios through submarine groundwater discharge and promoting eutrophication in the Central IRL. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
56

Plant growth and nutrient removal in simulated secondary-treated municipal wastewater in wetland microcosmos

Zhang, Zhenhua January 2008 (has links)
[Truncated abstract] The use of constructed wetlands for tertiary purification of municipal wastewater has received increasing attention around the world because direct discharge of secondary-treated municipal wastewater to water bodies has caused eutrophication. Plant species selection and vegetation management may enhance nutrient removal efficiency in constructed wetlands. However, there is a lack of knowledge on the relations between plant growth and nutrient removal efficiency in constructed wetlands. The objective of this study is to better understand how plant growth and resource allocation are influenced by nutrients in wastewater and how nutrient removal efficiencies are affected by plant species and vegetation management. The preliminary experiment was conducted to select macrophytes, especially ornamental species, to grow in the wastewater in the wetland microcosms. Ten plant species, comprising six ornamental species: Alocasia macrorrhiza, Canna indica, Iris louisiana, Lythrum sp., Zantedeschia aethiopica, Zantedeschia sp., and four sedge species: Baumea articulate, Baumea juncea, Carex tereticaulis and Schoenoplectus validus, were planted in the wetland microcosms and fed a simulated wastewater solution in the concentrations similar to the secondary-treated municipal wastewater. C. indica has shown vigorous and healthy growth, and a relatively high potential of rooting-zone aeration and nutrient removal efficiency. B. articulata and S. validus also showed relatively high nutrient removal efficiency. ... The high nutrient availability and optimum N/P ratio were required for stimulating plant growth, resulting in allocation of more resources to above-ground tissues compared to below-ground parts, and enhancing nutrient removal efficiency. Nutrient removal efficiencies were significantly influenced by growth of C. indica and S. validus, nutrient loading rates and N/P ratios in the wastewater. The nutrient uptake kinetics of C. indica and S. validus were investigated to elucidate the differences in nutrient uptake between species. Wetland plant species have shown differential nutrient uptake efficiency and different preferences for inorganic N source, with C. indica preferring NO3-N and S. validus preferring NH4-N. C. indica had greater capacity than S. validus to take up PO4-P when the concentration of PO4-P in the solution was relatively low, whereas S. validus was more capable than C. indica to take up NO3-N when the concentration of NO3-N in the solution was relatively low. The PO4-P uptake capacity was higher in younger than older plants. Overall, the study has suggested that different plant species have differential capacity to take up nutrients. In addition to nutrient uptake, plants have significant other roles in terms of nutrient removal from the wastewater (such as leaking oxygen into the rhizosphere in which oxidation of substances like ammonia can occur). The properly high nutrient availability and optimum N/P ratio are required to stimulate the plant growth, resulting in enhancing the treatment performance in the wetlands. These findings have important implications for improving our ability to engineer ecological solutions to the problems associated with nutrient-rich wastewater.
57

Biogenic silica and diatom centricpennate ratios as indicators of historical coastal pollution

Spasojević, Zorana January 2002 (has links)
Historical environmental changes in two shallow, unstratified, estuaries in Buzzards Bay, Massachusetts are compared, using three diatom paleo-production indicators: sedimentary biogenic silica (BSi), BSi flux and ratio of Centric to Penate diatoms. Both estuaries were exposed to pollution. New Bedford Harbor (NBH) has a history of intensive nutrient loading and industrial pollution, while the control site, Apponagansett Bay, has lower levels of nutrient loading. Consideration of local precipitation history and diatom parameters suggests that salinity-driven changes in diatom production are negligible. Over the past ∼350 yrs, BSi concentrations and fluxes are higher in NBH. Thus, overall diatom production is sensitive to nutrient enrichment and less responsive to industrial pollutants. The relationship between the C/P ratio and environmental conditions is not as clear, possibly due to its dependence on eelgrass abundance. The uniqueness of this study lies in its use of the parameters combined, as well as its geographic setting.
58

Assesment [sic] of water quality parameters in the West Fork of the White River in Muncie, Delaware County, Indiana / Assesment of water quality parameters in the West Fork of the White River in Muncie, Delaware County, Indiana / Assessment of water quality parameters in the West Fork of the White River in Muncie, Delaware County, Indiana

Asbaghi, Navid January 2007 (has links)
Water quality parameters including ammonia, nitrate+nitrite, phosphate, total suspended solids, Escherichia coli, and dissolved oxygen were statistically evaluated from sampling data collected by the Bureau of Water Quality (City of Muncie, Indiana) at five sampling locations in Delaware County over a five-year period (2002-2006). These data were also compared with water quality standards/guidelines to determine how sample values compared to acceptable levels of these parameters. Friedman's non-parametric test was used to study the differences between sites and seasons. Spearman's Rank Correlation was used to study the correlations between water quality parameters at each sampling site. Significant differences were observed for individual parameters when evaluated relative to sampling location based on pooled monthly collected data as well as data evaluated on a seasonal basis. These differences indicated the fact that different sources were responsible for observed concentrations at a particular location and that seasonal phenomenon such as precipitation, discharge and temperature also affected sample concentrations at individual sampling locations. Most notable were differences in geometric mean concentrations of ammonia, nitrate+nitrite, phosphate and E. coli upstream and downstream of the wastewater treatment plant (WWTP), with highest concentrations downstream, indicating the significant impact of the WWTP on water quality in the White River. Significant correlations observed among some study parameters suggested that sample concentrations may have been affected by similar sources. In comparison to water quality standards, concentrations of ammonia, nitrate+nitrite, phosphate, and E. coli were at unacceptable levels at most sampling locations. / Department of Natural Resources and Environmental Management
59

Relationship of nutrients and pesticides to landuse characteristics in three subwatersheds of the upper White River, IN

Goward, Kelly J. January 2004 (has links)
Stream samples were tested at 18 sites in three subwatersheds of the Upper White River for ammonia, nitrate, orthophosphate, atrazine, and diazinon. Nutrient results were tested with a general linear model and in linear regressions with selected landuse characteristics. A critical areas index for surface runoff of pollutants was created using a geographic information system. Comparisons were made between results obtained by Ball State University and by the Muncie Bureau of Water Quality and other outside laboratories. Most mean concentrations of nutrients were likely related to combinations of agricultural and residential landuse factors. Only concentrations of ammonia and orthophosphate were significantly related (a = 0.05) to any landuse characteristics. Atrazine levels were high in the spring, but decreased in the fall. Results suggest that improved or increased best management practices should be implemented in these subwatersheds to control non-point source pollution of the streams. / Department of Natural Resources and Environmental Management
60

The Performance of Simple Artificial Floating Wetland Communities and Their Effects on Aquatic Nutrient Levels and Algal Abundance

Sleeth, Bradley L 01 January 2014 (has links)
Harmful algal blooms are exponential increases in autotrophic microorganisms that proliferate in such a way that the surrounding environment, the local economy and the health of regional populations are negatively affected. Among the causes of these blooms are anthropogenic inputs of excess nitrogen and phosphorus into the environment through overfertilization. Floating treatment wetlands (FTW) have emerged as a novel method of reducing the negative impacts of these nutrient inputs by using artificial rafts to float normally emergent wetland plants on the surface of water bodies to assimilate excess nutrients. Because their use is so new, only limited research has been performed on their effectiveness. This mesocosm-level study evaluated the performance of a FTW consisting of a community of yellow canna (Canna flaccida), blue flag iris (Iris hexagona) and bulltongue arrowhead (Saggittaria lancifolia) in simulated stormwater of varying nitrogen and phosphorus concentrations. The community of plants displayed nitrogen limitation, while the cyanobacteria-dominated algal community that developed displayed phosphorus limitation, leading to the conclusion that in order for this community of macrophytes to limit algal growth, nitrogen must be present to support their growth and concurrent assimilation of the algae-limiting nutrient phosphorus. Canna and iris were found to significantly outperform arrowhead in terms of biomass gains. The study also showed that the size of the plants may be of great importance in the ability of FTWs to limit algal development. Despite the fact that the community of plants in this study were unable to limit the development of algae, the use of FTWs remains promising and further research should be done to continue to enhance our understanding of their strengths and weaknesses.

Page generated in 0.1065 seconds