• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 9
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 17
  • 17
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

DATA ACQUISITION AND THE ALIASING PHENOMENON

Claflin, Ray, Jr., Claflin, Ray, III 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In current practice sensor data is digitized and input into computers, displays, and recorders. To try to reduce the volume of digitized data, our original hypothesis was that by selecting a subset of digital values from an over-sampled signal, we could improve signal identification and improve perhaps Nyquist performance. Our investigations did not lead to significant improvements but did clarify our thinking regarding the usage of digitized data.
12

Power-efficient two-step pipelined analog-to-digital conversion

Lee, Ho-Young 30 November 2011 (has links)
Hand-held devices are among the most successful consumer electronics in modern society. Behind these successful devices, lies a key analog design technique that involves high-performance analog-to-digital conversion combined with very low power consumption. This dissertation presents two different approaches to achieving high power efficiency from a two-step pipelined architecture, which is generally known as one of the most power-consuming analog-to-digital converters. In the first approach, an analog feedback loop of a residue amplifier in a two-step pipelined analog-to-digital converter is reconfigured digitally using a single comparator and an R-2R digital-to-analog converter. This comparator-based structure can reduce power consumption of a conventional two-step pipelined analog-to-digital converter which consists of an opamp-based residue amplifier followed by a second- stage analog-to-digital converter. In addition, this dissertation includes circuit design techniques that provide a digital offset correction for the comparator-based two-step structure, binary-weighted switching for an R-2R digital-to-analog converter, and reference trimming for a flash analog-to-digital converter. A 10-b prototype analog-to-digital converter achieves an FOM of 121 fJ/conversion-step under 0.7-V supply. The second approach provides a way to achieve low power consumption for a high-resolution two-step pipelined analog-to-digital converter. An opamp is designed to consume optimized static power using a quarter-scaled residue gain together with minimized loading capacitance from the proposed second stage. A 14-b prototype analog-to-digital converter achieves an FOM of 31.3 fJ/conversion-step with an ENOB of 11.4 b, which is the lowest FOM in high-resolution analog-to-digital converters having greater than an ENOB of 10 b. Finally, the potential for further power reduction in a two-step pipelined analog-to-digital converter is discussed as a topic for future research. / Graduation date: 2012
13

Tree-Structured Linear-Phase Nyquist FIR Filter Interpolators and Decimators

Lahti, Jimmie January 2012 (has links)
The master thesis is based upon a new type of linear-phase Nyquist finitie impulse responseinterpolator and decimator implemented using a tree-structure. The tree-structure decreasesthe complexity, considerably, compared to the ordinary single-stage interpolator structure.The computational complexity is comparable to a multi-stage Nyquist interpolator structure,but the proposed tree-structure has slightly higher delay. The tree-structure should still beconsidered since it can interpolate with an arbitrary number and all subfilters operate at thebase rate which is not the case for multi-stage Nyquist interpolators.
14

A Comparison of Compressive Sensing Approaches for LIDAR Return Pulse Capture, Transmission, and Storage

Castorena, Juan 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / Massive amounts of data are typically acquired in third generation full-waveform (FW) LIDAR systems to generate image-like depthmaps of a scene of acceptable quality. The sampling systems acquiring this data, however, seldom take into account the low information rate generally present in the FW signals and, consequently, they sample very inefficiently. Our main goal here is to compare two efficient sampling models and processes for the individual time-resolved FW signals collected by a LIDAR system. Specifically, we compare two approaches of sub-Nyquist sampling of the continuous-time LIDAR FW return pulses: (i) modeling FW signals as short-duration pulses with multiple bandlimited echoes, and (ii) modeling them as signals with finite rates of innovation (FRI).
15

Full-Waveform LIDAR Recovery at Sub-Nyquist Rates

Castorena, Juan 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Third generation LIDAR full-waveform (FW) based systems collect 1D FW signals of the echoes generated by laser pulses of wide bandwidth reflected at the intercepted objects to construct depth profiles along each pulse path. By emitting a series of pulses towards a scene using a predefined scanning patter, a 3D image containing spatial-depth information can be constructed. Unfortunately, acquisition of a high number of wide bandwidth pulses is necessary to achieve high depth and spatial resolutions of the scene. This implies the collection of massive amounts of data which generate problems for the storage, processing and transmission of the FW signal set. In this research, we explore the recovery of individual continuous-time FW signals at sub-Nyquist rates. The key step to achieve this is to exploit the sparsity in FW signals. Doing this allows one to sub-sample and recover FW signals at rates much lower than that implied by Shannon's theorem. Here, we describe the theoretical framework supporting recovery and present the reader with examples using real LIDAR data.
16

Analysis and evaluation of nyquist-I pulses impaired by inter-symbol and co-channel interference

Aranda-Cubillo, Jaime January 2019 (has links)
Tesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Eléctrica / Memoria para optar al título de Ingeniero Civil Eléctrico / Las actuales tendencias en los sistemas de comunicaciones inalámbricas, nos llevan a dis- eñar sistemas con un eficiente uso del espectro, ya que los requisitos de tasas de transmisión, de manera conservadora, se duplican cada año. La transmisión de señales a altas tasas genera interferencia inter-simbólica (ISI), efecto que degrada el rendimiento de los sistemas de comu- nicaciones. El diseño de señales libres de ISI en canales limitados en banda fue un problema abordado por Nyquist. El primer criterio de Nyquist (Nyquist-I), garantiza que una secuen- cia de pulsos será libre de ISI siempre y cuando sea muestreada en múltiplos del tiempo de símbolo. De la misma forma, el desarrollo de nuevas tecnologías, como Machine to Machine Communication (M2MC), Internet of Things (IoT) o redes móviles 5G, han introducido una gran cantidad de dispositivos demandando también un uso eficiente del espectro. En estos ambientes, la detección de datos de un usuario a menudo se corrompe por señales de otros usuarios ubicados en distancias cercanas o moderadas que usan la misma banda de frecuen- cia. El objetivo del re-uso de frecuencias es incrementar la eficiencia espectral. Este tipo de interferencia es llamada interferencia co-canal (CCI) y afecta negativamente el desempeño de los sistemas de comunicaciones. Así, la evaluación de diferentes pulsos de Nyquist-I, que mitigan los efectos de interferencias, es de considerable interés. En el presente trabajo se realiza la evaluación, comparación y análisis de distintos pulsos de Nyquist-I, considerando los efectos de la ISI, CCI y simultáneamente, ISI y CCI en sistemas banda-base y pasa-banda. Se considera la respuesta completa y truncada de los pulsos. Además se consideran 2 modelos para representar los efectos del CCI, el modelo sinusoidal y Preciso. Este análisis se realiza debido a que el tópico es escasamente tratado en la literatura. Luego, para realizar una comparación justa, los parámetros de los pulsos son optimizados considerando restricciones en el dominio de la frecuencia para condiciones particulares de los sistemas de comunicaciones. Los pulsos se evaluan principalmente en términos de la probabilidad de error de bit (BER) y, en todos los casos se presenta su comportamiento en el dominio de la frecuencia. Lo resultados indican que existen diferencias significativas en cuanto al desempeño de los pulsos, considerando distintos tipos de interferencias y tipos de respuesta. Los resultados anteriores pueden ser utilizados para hacer un diseño más eficiente de los sistemas de comunicaciones o también crear filtros adaptativos que modifiquen sus parámetros considerando las condiciones particulares de propagación. / FONDECYT Iniciacion, Grant No. 11160517
17

Relative Permittivity As A Function of Co-Solvent and Impedance Spectroscopy for Quantifying Anions in Solution

Alseiha, Yahya Sami 01 December 2018 (has links) (PDF)
This work measured relative permittivity from 15.0 to 55.0 °C of aqueous solutions containing acetone or tetrahydrofuran using a BI 870 dielectric meter. A cubic polynomial fit resulted in coefficients for calculating permittivity as a function of temperature and mole fraction. Literature values for other co-solvent system resulted in similar polynomial coefficients. Using BI 870, permittivity measurements of ionic solutions were not possible because of high conductivity. A simple method using impedance spectroscopy measured these solutions. Impedance decreases with increasing temperature and decreases with increasing ionic strength. Due to the temperature dependence of impedance, all measurements were at 25.0 °C. Anions including bicarbonate, sulfate, acetate, and carbonate were determined using this method. Detection limits were at parts per trillion (ppt) levels. A simple sensor based on smaller stainless steel cylinders and a circuit to determine impedance is currently being developed in combination with an anion exchange column.
18

Quantum-coherent transport in low-dimensional mesoscopic structures and thin films

Xie, Yuantao 10 January 2018 (has links)
This thesis experimentally studies quantum interference phenomena and quantum coherence in mesoscopic systems, and quantum transport as well as magnetotransport in various materials system. One overarching aim is exploring the different mechanisms that give rise to quantum phase decoherence in lithographically patterned mesoscopic structures, of importance in the field of quantum technologies and spintronics. Various mesoscopic structures, namely quantum stadia, quantum wires, and side-gated rings, were fabricated to function as quantum interference devices and platforms to study quantum coherence on two-dimensional electron systems in InGaAs/InAlAs heterostructures. The mesoscopic structures were fabricated by photolithography and electron-beam lithography. The dependence of quantum coherence on geometry or temperature is investigated for each of the quantum interference devices. In the case of quantum stadia, phase coherence lengths were extracted by universal conductance fluctuations, and the extracted phase coherence lengths show a dependence on both temperature and geometry. Phase coherence lengths decreased with increasing temperature, as expected. Moreover, phase coherence lengths also varied with the width-to-length ratio and length of the side wires connected to the stadia, where competition between Nyquist decoherence and environmental coupling decoherence mechanisms coexists. For the quantum wires studied, the phase coherence lengths were extracted from antilocalization signals. Antilocalization measurements provide a sensitive mean of probing the quantum mechanical correction to electronic transport. The phase coherence lengths increased as the wire length increased, due to reduction of the environmental coupling that induces decoherence at the ends of a wire; longer wires tend to have longer phase coherence lengths. In related work, the thesis shows that the spin coherence length, as limited by spin-orbit interaction, increases as the wire width decreases. Decoherence in side-gated rings was measured from the amplitudes of the quantum-mechanical Aharonov-Bohm oscillations. The side gates allow for an in-plane controllable electric field. Asymmetrically biased side-gate voltages allow for the breaking of the two-dimensional parity symmetry of the ring device, effectively resulting in reduced amplitude of the Aharonov-Bohm oscillations. The mechanism that contributes to decoherence in these rings appears to be related to the breaking of the spatial symmetry. Measurements of antilocalization and weak-localization as well as magnetotransport were used to probe interesting or unique quantum mechanical phenomena in the following two, quite different, materials system: bismuth iridate thin films, and Ge/AlAs heterostructures on GaAs or Si substrates. Both materials are of interest for future quantum technologies and devices. Measurements in bismuth iridate thin films reveal interesting transport characteristics such as logarithmic temperature dependence of the resistivity, multiple charge carriers, and antilocalization due to spin-orbit interaction in the system. Weak localization measurements in the Ge/AlAs heterostructure on GaAs or Si substrates show that single carrier transport is essentially located in the Ge layer only. Further, the weak localization results indicate the near-absence of spin-orbit interaction for carriers in the electronically active Ge layer, suggesting the potential use of this materials system as a promising candidate for future electronic device applications. In short, quantum transport and interference measurements probe the quantum-mechanical behavior of materials system for future quantum, spin and electronic technologies. Mesoscopic patterned geometries in InGaAs/InAlAs heterostructures offer a wide range of interesting and unique platforms to study quantum-mechanical phenomena, specifically quantum decoherence, in the solid state. The decoherence phenomena observed and the investigations to the underlying mechanisms studied and modeled in this thesis may be transferred to similar materials system, enriching the knowledge in the field of quantum technologies. Magnetotransport and quantum transport were also applied to Ge/AlAs heterostructures and bismuth iridate thin films, to study the properties of their carrier systems. / Ph. D.
19

Quantifizierung von Mitralinsuffizienz unter Verwendung von Color flow Doppler und Baseline shift

Heß, Hannah Maria Ursula 09 February 2017 (has links)
Vena contracta width (VCW) and effective regurgitant orifice area (EROA) are well established methods for evaluating mitral regurgitation using transesophageal echocardiography (TEE). For color-flow Doppler (CF) measurements Nyquist limit of 50–60 cm/s is recommended. Aim of the study was to investigate the effectiveness of a baseline shift of the Nyquist limit for these measurements. After a comprehensive 2-dimensional (2D) TEE examination, the mitral regurgitation jet was acquired with a Nyquist limit of 50 cm/s (NL50) along with a baseline shift to 37.5 cm/s (NL37.5) using CF. Moreover a real time 3-dimensional (RT 3D) color complete volume dataset was stored with a Nyquist limit of 50 cm/s (NL50) and 37.5 cm/s (NL37.5). Vena contracta width (VCW) as well as Proximal Isovelocity Surface Area (PISA) derived EROA were measured based on 2D TEE and compared to RT 3D echo measurements for vena contracta area (VCA) using planimetry method. Correlation between VCA 3D NL50 and VCW NL50 was 0.29 (p<0.05) compared to 0.6 (p<0.05) using NL37.5. Correlation between VCA 3D NL50 and EROA 2D NL50 was 0.46 (p<0.05) vs. 0.6 (p<0.05) EROA 2D NL37.5. Correlation between VCA 3D NL37.5 and VCW NL50 was 0.45 (p<0.05) compared to 0.65 (p<0.05) using VCW NL37.5. Correlation between VCA 3D NL37.5 and EROA 2D NL50 was 0.41 (p<0.05) vs. 0.53 (p<0.05) using EROA 2D NL37.5. Baseline shift of the NL to 37.5 cm/s improves the correlation for VCW and EROA when compared to RT 3D NL50 planimetry of the vena contracta area. Baseline shift in RT 3D to a NL of 37.5 cm/s shows similar results like NL50.
20

Formatação de pulso em sistemas coerentes Nyquist-WDM / Geometric pulse shaping in Nyquist-WDM coherent systems

Vanzella, Leonardo Antonio 19 May 2017 (has links)
A necessidade de transmissão de canais modulados a taxas a partir de 400 Gb/s tem motivado a pesquisa e os esforços relativos às tecnologias de camada física habilitadores desta alta capacidade. A atenção se volta, principalmente, aos frontends (transmissores e receptores), aliados aos processadores digitais de sinal (Digital Signal Processors, DSPs), às técnicas de amplificação óptica e a novos tipos de fibra óptica. Em particular a técnica baseada no emprego de filtros de Nyquist combinados à multiplexação de comprimentos de onda (Wavelength Division Multiplexing, DWM), conhecida como Nyquist-WDM, ou N-WDM, tem atraído grande interesse para geração de supercanais ópticos, hoje um dos elementos chave nos sistemas de redes ópticas. O estudo dos fundamentos e casos particulares dos filtros de Nyquist são aprofundados nesta dissertação para o controle de seus parâmetros, em especial o parâmetro conhecido como fator de roll-off, em aplicações que requerem flexibilidade na ocupação espectral e até o reaproveitamento das limitações do filtro para atenuar alguns efeitos lineares e não lineares na fibra. A técnica utiliza um tipo de formatação geométrica de pulso e é limitada pelo ajuste grosso do fator de roll-off, mas como abordagem inicial, permite estabelecer uma série de compromissos na concepção do circuito eletrônico de um transponder sintonizável. Uma investigação teórica foi feita em um sistema PM-16QAM de 21x256 Gb/s, a partir de dados experimentais obtidos com roll-off igual 0,1, para análise do efeito no desempenho sistêmico do ajuste do excesso de largura de banda (em relação à banda de Nyquist) de um filtro formatador de pulso. O fator de roll-off foi ajustado e seu impacto no desempenho do sistema, em termos de alcance, foi verificado. A partir dos resultados, foi observado que, desde que a taxa de erro de bit, BER, esteja dentro do limite do código corretor de erro (forward error corrector, FEC), o valor de roll-off pode ser ajustado para um valor ótimo de acordo com a configuração do sistema e as metas requeridas. Uma vez encontrada a relação entre a BER e o fator de roll-off, foi possível determinar um fator de mérito que relaciona a resolução do filtro de Nyquist, em função do número de taps que ele emprega, o consumo de energia da DSP e, consequentemente, a BER. O compromisso assim estabelecido entre o desempenho sistêmico, o consumo de energia e o fator de roll-off representa a principal contribuição desta dissertação. / The need for transmission of channels modulated at rates greater than 400 Gb/s has motivated the research and efforts related to the physical layer technologies that will enable this high capacity. The attention turns mainly to the frontends (transmitters and receivers), allied to digital signal processors (DSPs), optical amplification techniques and new types of optical fiber. The technique based on the use of Nyquist filters combined withWavelength Division Multiplexing (WDM), known as Nyquist-WDM, or N-WDM, has attracted great interest for the generation of optical super-channels, today one of the key elements in optical network systems. The study of the fundamentals and particular cases of the Nyquist filters are detailed in this dissertation for mastering the control of the parameters, especially the parameter known as roll-off factor, for applications that require flexibility in the spectral occupation and even the reutilization of the limitations of the filter to attenuate some linear and non-linear effects on the fiber. The technique uses a geometric type of pulse-shaping, and is limited by the roll-off factor tunning, but as an initial approach, it allows to establish a series of compensations in the design of the electronic circuit of a tunable transponder. A theoretical investigation was made on a 21x256 Gb/s PM-16QAM system, taken as reference the experimental data obtained with roll-off equal to 0.1, to analyze the effects of adjusting the excess bandwidth (relative to the Nyquist band) of a pulse-shaping filter. The roll-off factor was tunned and its impact on the system performance in terms of range effects was verified. From the results, it was observed that, as long as the bit error ratio, BER, is within the FEC limit, the roll-off parameter can be set to an optimum value according to the system configuration and required targets. Once the relationship between the BER and the roll-off factor was found, it was possible to determine a merit factor that relates the resolution of the Nyquist filter, as a function of the number of taps it uses, the energy consumption of the DSP and, consequently, the BER. The compromise thus established between system performance, energy consumption and roll off represents the main contribution of this work.

Page generated in 0.1094 seconds