151 |
Influences of Printing Techniques on the Electrical Performances of Conjugated Polymers for Organic TransistorsManuelli, Alessandro 11 January 2007 (has links) (PDF)
The discovery of conducting and semiconducting polymers has opened the possibility to produce
integrated circuits entirely of plastic with standard continuous printing techniques. Nowadays
several of this polymers are commercial available, however the performances of this materials are
strongly affected by their supramolecular order achieved after deposition. In this research, the
influence of some standard printing techniques on the electrical performances of conjugated
polymers is evidenced in order to realise logic devices with these materials.
|
152 |
Solution Processable Conducting Films based on Doped Polymers:Karpov, Yevhen 28 November 2017 (has links) (PDF)
Thesis describes recent advances in the synthesis of donor-acceptor conjugated copolymers and their efficient doping via molecular p-dopants.
|
153 |
Influences of Printing Techniques on the Electrical Performances of Conjugated Polymers for Organic TransistorsManuelli, Alessandro 20 July 2006 (has links)
The discovery of conducting and semiconducting polymers has opened the possibility to produce
integrated circuits entirely of plastic with standard continuous printing techniques. Nowadays
several of this polymers are commercial available, however the performances of this materials are
strongly affected by their supramolecular order achieved after deposition. In this research, the
influence of some standard printing techniques on the electrical performances of conjugated
polymers is evidenced in order to realise logic devices with these materials.
|
154 |
Solution Processable Conducting Films based on Doped Polymers:: Synthesis and CharacterizationKarpov, Yevhen 10 November 2017 (has links)
Thesis describes recent advances in the synthesis of donor-acceptor conjugated copolymers and their efficient doping via molecular p-dopants.:Chapter I
Preface
Motivation and Goals
Outline 7
Chapter II 8
State of the Art & Characterization Techniques 8
2.1. General Introduction 8
2.1.1. Concept of Conjugated Polymers 9
2.1.2. Electronic Conduction and Necessity of Doping in Conjugated Polymers 11
2.1.3. Solubility and Processing. 14
2.2. Doping 17
2.2.1. Concept of Doping in Conjugated Polymers 17
2.2.2. Morphological Changes of the Material upon Doping. Conductivity. 20
2.2.3. State-of-the-art p-dopants. 23
2.3. Synthetic Strategies for the Design of (Semi)conducting Polymers 28
2.3.1. A Concise Review: from Polyacetylene till Modern DA Polymers 28
2.3.2. Synthetic Routes to Conjugated Polymers 31
2.3.3. Step-growth vs Chain-growth 34
2.3.4. Benchmark solution-processable Polymers 38
2.4. Characterization techniques 41
2.4.1. Conductivity Measurements 41
2.4.2. Electrochemical Voltammetry 42
2.4.3. Uv-vis-near-infrared 44
2.4.4. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. 44
2.4.5. Morphological studies. 45
2.4.6. Electron Spin Resonance Spectroscopy. 46
Chapter III 48
Results & Discussion 48
3.1. Diketopyrrolopyrrole-Based Copolymers 50
3.1.1. Motivation 50
3.1.2. Results and Discussion 51
3.1.4. Summary 89
3.2. Naphthalene Diimide-based Copolymer 90
3.2.1. Motivation 90
3.2.2. Results and Discussion 92
3.2.4. Summary 105
3.3. Isoindigo-Based Copolymers 107
3.3.1. Motivation 107
3.3.2. Results and Discussion 108
3.3.4. Summary 119
Summary & Conclusions 120
Outlook 123
Chapter IV 125
Experimental Part 125
4.1. General Methods and Instrumentation 125
4.2. Synthesis 129
4.2.1. Synthesis of diketopyrrolopyrrole copolymer. 129
4.2.2. Synthesis of electron-conducting polymer (PNDIT2) 132
4.2.3. Synthesis of polyisoIndigo 132
4.2.3. Synthesis of Dopants 135
4.3. Cyclic voltammetry measurements 136
4.4. GIWAX data. 143
4.5. Films preparation 145
References 147
Table of Abbreviations 159
List of Publications 161
Acknowledgements 162
Appendix 163
|
155 |
AN ORGANIC NEURAL CIRCUIT: TOWARDS FLEXIBLE AND BIOCOMPATIBLE ORGANIC NEUROMORPHIC PROCESSINGMohammad Javad Mirshojaeian Hosseini (16700631) 31 July 2023 (has links)
<p>Neuromorphic computing endeavors to develop computational systems capable of emulating the brain’s capacity to execute intricate tasks concurrently and with remarkable energy efficiency. By utilizing new bioinspired computing architectures, these systems have the potential to revolutionize high-performance computing and enable local, low-energy computing for sensors and robots. Organic and soft materials are particularly attractive for neuromorphic computing as they offer biocompatibility, low-energy switching, and excellent tunability at a relatively low cost. Additionally, organic materials provide physical flexibility, large-area fabrication, and printability.</p><p>This doctoral dissertation showcases the research conducted in fabricating a comprehensive spiking organic neuron, which serves as the fundamental constituent of a circuit system for neuromorphic computing. The major contribution of this dissertation is the development of the organic, flexible neuron composed of spiking synapses and somas utilizing ultra-low voltage organic field-effect transistors (OFETs) for information processing. The synaptic and somatic circuits are implemented using physically flexible and biocompatible organic electronics necessary to realize the Polymer Neuromorphic Circuitry. An Axon-Hillock (AH) somatic circuit was fabricated and analyzed, followed by the adaptation of a log-domain integrator (LDI) synaptic circuit and the fabrication and analysis of a differential-pair integrator (DPI). Finally, a spiking organic neuron was formed by combining two LDI synaptic circuits and one AH synaptic circuit, and its characteristics were thoroughly examined. This is the first demonstration of the fabrication of an entire neuron using solid-state organic materials over a flexible substrate with integrated complementary OFETs and capacitors.</p>
|
156 |
Development of advanced cross conjugated systems and applications in ratiometric sensing: altering the electronic properties of cruciforms and poly(para-phenyleneethynylene)s to elicit differing reactivity and responseDavey, Evan Andrew 13 May 2012 (has links)
This research serves as a meticulous examination into cross-conjugated materials and how alterations of the frontier molecular orbitals can be utilized for applications in "chemical tongue" organic sensing devices. With conjugated materials being used in the development of new sensory devices for detection of metals, bacteria, and chemical warfare agents, the field of organic sensing is growing faster than ever. The purpose of this dissertation is to provide a precedence for the synthesis of new cross-conjugated compounds and outline potential applications of these materials as chemical sensors and molecular probes.
|
157 |
Organic semiconductor lasers : compact hybrid light sources and development of applicationsYang, Ying January 2010 (has links)
This thesis describes a number of studies on organic semiconductors as laser gain media with the aim of simplifying the excitation scheme and exploring potential applications. A hybrid device taking the advantage of high power inorganic light emitting diodes (LEDs) and low threshold organic distributed feedback lasers is demonstrated to realize a LED pumped organic laser. When the drive current is higher than 152 A, a sharp peak is clearly observed in the laser output spectrum, implying the LED successfully pumps the polymer laser above threshold. This is the first time an incoherent LED has been used as the excitation source for an organic semiconductor laser. A strategy for further improving the performance of the hybrid device is explored with the use of a luminescent concentrator made of a dye doped SU8 film, to intensify the power density from the inorganic LED. The luminescent concentrator is capable of increasing the incident power density by a factor of 9 and reducing the lasing threshold density by 4.5 times. As a preliminary investigation towards mode-locked polymer lasers, the impact of a solid state saturable absorber on a solution based organic semiconductor laser is explored. The dye doped polystyrene thin film saturable absorber exhibits a saturation intensity of a few MW/cm². When it is placed into the laser cavity, a train of short pulses is generated and the underlying mechanism is discussed. Finally, the potential of using organic semiconductor lasers in the detection of nitro-aromatic explosive vapours is studied in distributed feedback polyfluorene lasers. A high sensing efficiency and fast response from the laser prove polyfluorene lasers can be used as disposal and low cost devices in explosive chemosensing.
|
158 |
Switching mechanisms, electrical characterisation and fabrication of nanoparticle based non-volatile polymer memory devicesPrime, Dominic Charles January 2010 (has links)
Polymer and organic electronic memory devices offer the potential for cheap, simple memories that could compete across the whole spectrum of digital memories, from low cost, low performance applications, up to universal memories capable of replacing all current market leading technologies, such as hard disc drives, random access memories and Flash memories. Polymer memory devices (PMDs) are simple, two terminal metal-insulator-metal (MIM) bistable devices that can exist in two distinct conductivity states, with each state being induced by applying different voltages across the device terminals. Currently there are many unknowns and much ambiguity concerning the working mechanisms behind many of these PMDs, which is impeding their development. This research explores some of these many unanswered questions and presents new experimental data concerning their operation. One prevalent theory for the conductivity change is based on charging and charge trapping of nanoparticles and other species contained in the PMD. The work in this research experimentally shows that gold nanoparticle charging is possible in these devices and in certain cases offers an explanation of the working mechanism. However, experimental evidence presented in this research, shows that in many reported devices the switching mechanism is more likely to be related to electrode effects, or a breakdown mechanism in the polymer layer. Gold nanoparticle charging via electrostatic force microscopy (EFM) was demonstrated, using a novel device structure involving depositing gold nanoparticles between lateral electrodes. This allowed the gold nanoparticles themselves to be imaged, rather than the nanoparticle loaded insulating films, which have previously been investigated. This method offers the advantages of being able to see the charging effects of nanoparticles without any influence from the insulating matrix and also allows charging voltages to be applied via the electrodes, permitting EFM images to capture the charging information in near real-time. Device characteristics of gold nanoparticle based PMDs are presented, and assessed for use under different scenarios. Configurations of memory devices based on metal-insulator-semiconductor (MIS) structures have also been demonstrated. Simple interface circuitry is presented which is capable of performing read, write and erase functions to multiple memory cells on a substrate. Electrical properties of polystyrene thin films in the nanometre thickness range are reported for the first time, with insulator trapped charges found to be present in comparable levels to those in silicon dioxide insulating films. The dielectric breakdown strength of the films was found to be significantly higher than bulk material testing would suggest, with a maximum dielectric strength of 4.7 MV•cm-1 found, compared with the manufacturers bulk value of 0.2 – 0.8 MV•cm-1. Conduction mechanisms in polystyrene were investigated with the dominant conduction mechanism found to be Schottky emission.
|
159 |
Conception, synthèse et caractérisation de systèmes π-conjugués organosiliciés pour l'élaboration des dispositifs optoélectroniques. / Design, synthesis and characterization of π-conjugated organosilicon systems for the development of optoelectronic devices.Amro, Kassem 10 December 2010 (has links)
Ce travail porte sur la conception de nouveaux composés π-conjugués, potentiellement utilisable en électronique organique en tant que matériaux actifs dans des dispositifs tels que les OLEDs, les cellules photovoltaïques et les capteurs optiques. Dans ce but, nous avons exploité le motif silacyclopentadiène appelé également silole, possédant un bon rendement quantique de fluorescence à l'état solide et une excellente conduction des électrons. Dans un premier temps, l'introduction de groupements structurants (triptycène, stilbènes..) sur le silacyclopentadiène a permis de moduler l'arrangement moléculaire dans la couche active et par conséquent, les propriétés d'électroluminescence. Des diodes possédant des performances très encourageantes furent ainsi obtenues. Dans un deuxième temps, des dérivés siloles présentant une structure tridimensionnelle et une architecture spirosilole (accepteur)-bithiophène (donneur) furent synthétisées. Une cellule photovoltaïque basée sur ces édifices présentant des performances encourageantes fut ensuite mis au point. Enfin, l'étude des mécanismes de transfert d'énergie entre un film de polymère fonctionnalisé par un groupement sensible silole et des composés nitroaromatiques nous a permis de réaliser un nouveau type de capteur optique hautement sensible pour la détection d'explosifs. / This work concerns the design of new π-conjugated compounds, potentially useful in organic electronics as active materials in devices such as OLEDs, photovoltaic cells and optical sensors. To this end, silacyclopentadiene, alias silole, groups were used exhibiting high fluorescence quantum yields in the solid state and excellent electron conductivities. Firstly, the introduction of structurizing groups (triptycene, stilbenes etc.) at the silacyclopentadiene allowed tuning of the molecular arrangement in the active layer and, consequently, the electroluminescence properties. Diodes showing very encouraging activities were thus obtained. Secondly, silole derivatives possessing a three-dimensional structure and a spirosilole (acceptor) - bithiophene (donor) architecture were synthesized. A photovoltaic cell based on these molecules was then developed exhibiting encouraging activity. Finally, a study of the mechanisms of energy transfer between a polymer film functionalized by a sensitive silole group and nitroaromatic compounds enabled the development of a new type of highly sensitive optical sensor for the detection of explosives.
|
160 |
Influence of Molecular Aggregation on Electron Transfer at the Perylene Diimide/Indium-Tin Oxide InterfaceZheng, Yilong, Jradi, Fadi M., Parker, Timothy C., Barlow, Stephen, Marder, Seth R., Saavedra, S. Scott 14 December 2016 (has links)
Chemisorption of an organic monolayer to tune the surface properties of a transparent conductive oxide (TCO) electrode can improve the performance of organic electronic devices that rely on efficient charge transfer between an organic active layer and a TCO contact. Here, a series of perylene diimides (PDIs) was synthesized and used to study relationships between monolayer structure/properties and electron transfer kinetics at PDI-modified indium-tin oxide (ITO) electrodes. In these PDI molecules, one of the imide substituents is a benzene ring bearing a phosphonic acid (PA) and the other is a bulky aryl group that is twisted out of the plane of the PDI core. The size of the bulky aryl group and the substitution of the benzene ring bearing the PA were both varied, which altered the extent of aggregation when these molecules were absorbed as monolayer films (MLs) on ITO, as revealed by both attenuated total reflectance (ATR) and total internal reflection fluorescence spectra. Polarized ATR measurements indicate that, in these MLs, the long axis of the PDI core is tilted at an angle of 33-42 degrees relative to the surface normal; the tilt angle increased as the degree of bulky substitution increased. Rate constants for electron transfer (k(s,opt)) between these redox-active modifiers and ITO were determined by potential-modulated ATR spectroscopy. As the degree of PDI aggregation was reduced, k(s,opt) declined, which is attributed to a reduction in the lateral electron self-exchange rate between adsorbed PDI molecules, as well as the heterogeneous conductivity of the ITO electrode surface. Photoelectrochemical measurements using a dissolved aluminum phthalocyanine as an electron donor showed that ITO modified with any of these PDIs is a more effective electron-collecting electrode than bare ITO.
|
Page generated in 0.0273 seconds