61 |
Design, Synthesis and Characterisation of Inhibitors of 3-Deoxy-D-arabino-Heptulosonate 7-Phosphate SynthaseWalker, Scott Raymond January 2007 (has links)
The enzyme 3-deoxy D-arabino-heptulosonate 7-phosphate (DAH7P) synthase catalyses the first step of the shikimate pathway. This pathway lies at the heart of bacterial metabolism, and is responsible for the synthesis of a variety of compounds essential to the chemistry of life; from the aromatic amino acids phenylalanine, tyrosine and tryptophan, to a number of aromatic and non-aromatic natural products. This thesis describes the design, synthesis and evaluation of inhibitors of DAH7P synthase. These inhibitors exploit a variety of strategies to interrupt the activity of DAH7P synthase, ranging from simple substrate mimicry to inhibitors that mimic unstable reaction intermediates; inhibitors that exploit metal coordination and entropic effects, and inhibitors that gain improved potency by interacting with multiple sites. In Chapter Two, the synthesis of a mimic for a proposed unstable reaction intermediate is described, and its interaction with DAH7P synthase characterised. The compound was prepared in twelve steps from D-arabinose, and was found to be a slow-tight binding inhibitor of Escherichia coli DAH7P synthase. In Chapter Three, a number of compounds are prepared that were designed to bind to the phosphoenolpyruvate subsite of the DAH7P synthase active site. The binding of these compounds to the enzyme is investigated in order to gain an understanding of the factors involved in DAH7P synthase inhibition. The enantiomeric phospholactates were prepared, and the extent of inhibition of E. coli DAH7P synthase was shown to be dependent on compound chirality. Several other phosphoenolpyruvate-like molecules were prepared, and were also shown to be effective DAH7P synthase inhibitors. In Chapter Four extended compounds are designed that will bind the enzyme by multiple interactions at both substrate binding sites. Four compounds were prepared, and an increase in inhibitory potency was observed. In Chapter Five computational techniques are explored to aid the interpretation of the inhibition of DAH7P synthase by the compounds prepared in these studies. Several approaches for more potent inhibition of this enzyme are outlined and discussed.
|
62 |
Automated Synthetic Feasibility Assessment: A Data-driven Derivation of Computational tools for Medicinal ChemistryHeifets, Abraham 21 July 2014 (has links)
The planning of organic syntheses, a critical problem in chemistry, can be directly modeled as resource- constrained branching plans in a discrete, fully-observable state space. Despite this clear relationship, the full artillery of artificial intelligence has not been brought to bear on this problem due to its inherent complexity and multidisciplinary challenges. In this thesis, I describe a mapping between organic synthesis and heuristic search and build a planner that can solve such problems automatically at the undergraduate level. Along the way, I show the need for powerful heuristic search algorithms and build large databases of synthetic information, which I use to derive a qualitatively new kind of heuristic guidance.
|
63 |
Development of the Domino Pericyclic Oxy-Cope/Ene /Claisen /Diels-Alder Reaction and the Synthesis of Complex Bicyclo[3.3.1]alkenonesSow, Boubacar 18 December 2013 (has links)
This thesis is a dissertation to support the development of new domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction, diversity oriented synthesis of PPAPs scaffold via sequential one pot cascade reaction and ethyl aluminum sesquichloride catalyzed highly hindered Diels-Alder reaction.
The first part concentrates on the domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction. As a result of this study, we have developed a general methodology for rapidly constructing complex diterpenes and discovered a thermal oxy-Cope/ene/Claisen/Claisen rearrangement, applied to the synthesis of trans decalin benzofurans.
The second part involved the development of an efficient synthetic approach towards bicyclo[3.3.1]nonenone core found in many natural products, via a sequential Diels-Alder/gold(I)-catalyzed 6-endo-dig cyclization and its application to the synthesis of a diversified library of PPAPs.
Finally, we have developed an efficient synthetic methodology for the formation of cyclohexene rings bearing quaternary carbon centers via an ethyl aluminum sesquichloride mediated highly hindered Diels-Alder reaction. This method solved an important problem encountered in the synthesis of many natural products including PPAPs. This methodology opened new opportunities in the total synthesis of PPAPs.
|
64 |
Understanding heterogeneous copper catalysts for coupling reactions in organic synthesisAl-Hmoud, Linda 12 January 2015 (has links)
Copper is an inexpensive, earth-abundant, non-toxic metal that is found to have widespread applications in catalysis. Ullmann and Ullmann-type reactions and Glaser-Hay oxidative coupling of terminal alkynes are some of the well-established copper catalyzed coupling reactions used for the construction of important organic molecules, including pharmaceuticals, commodity chemicals and polymers. Those reactions have been mainly performed homogeneously, where the removal of residual copper from the reaction mixture is a challenge. Therefore, many researchers tried supporting copper precatalysts in order to help recover, and thus reduce final product contamination. Some studies showed that copper leached significantly from the support, with others showing that leached copper has a role in the catalysis. Nevertheless, many studies reported that the used supported catalysts were recyclable and claimed catalyst's heterogeneity. In most cases, the nature of the truly active copper species is still not clear.
The objectives of this thesis were (1) to assess the heterogeneity/homogeneity of active copper species in popular catalytic C-N coupling reactions with already studied catalysts, mainly a copper exchanged zeolite and copper oxide nanoparticles, and (2) to use the collected information in designing a truly heterogeneous (stable and recyclable) catalyst.
Initially, and because of its shape selectivity characteristics, copper-exchanged NaY zeolite, Cu(II)Y, was chosen to study the heterogeneity of copper catalyzed amination of aryl iodide with imidazole. The collected results from conducted shape selectivity tests indicated that Cu(II)Y might be heterogeneous catalyst, but because of the used base, that is crucial for this C-N coupling reaction, the crystallinity of the zeolite structure was diminished. Therefore, it was important to support copper on a framework that is stable under the basic conditions required for this type of reaction if a heterogeneous, recyclable catalyst were to be achieved. For this purpose, cerium oxide was chosen, and copper oxide supported on cerium oxide, CuO-CeO₂, was investigated as a potential heterogeneous catalyst for C-N coupling reaction. This investigation included the role of each reaction reagent in facilitating copper leaching into solution. It was found that copper leached from the support and it was demonstrated through hot filtration tests that the leached copper species was the main active catalyst. Leaching was caused by the solvent (DMSO) as well as the used reactants and the base. Similar conclusions were drawn when this CuO-CeO₂ catalyst was used for the direct synthesis of imines from amines under aerobic conditions. Although this CuO-CeO₂ catalyst has the advantages of being more recoverable and active than unsupported CuO nanoparticles at similar copper loadings, it is not fully recyclable, as the copper catalysis occurs in solution.
These findings meant that designing a truly heterogeneous catalyst for this reaction is a challenging task. Understanding the effect of each individual factor of this complicated system might help in achieving the second goal - designing a truly heterogeneous catalyst. Therefore, further studies were carried out to understand the effect of reaction conditions, including temperature, base, support, and solvent, on copper leaching. Homocoupling of terminal alkynes was chosen as a model reaction for this study, and CuO was supported on TiO₂ (10CuO-TiO₂) and on γ-Al₂O₃ (10CuO-Al₂O₃). It was found that copper interaction with the support affects the extent of leaching as well as the nature and activity of leached species. High temperature also facilitates copper leaching especially when a ligating amine, like piperidine, is present in the system.
|
65 |
The effect of ultrasound on organic synthesis and processing from laboratory to large scale testPaniwnyk, Larysa January 1993 (has links)
The research programme involved the exploitation of ultrasound with a view to applications within commercial and processing industries. This was accomplished by employing dosimetry and calorimetry to study the efficiency of several sonochemical reactors. The effect of factors such as reaction vessel geometry and volume was investigated and the general trends obtained for all three dosimeters were comparable. The effects of various parameters e.g. power, solvent, volume etc etc on the sonochemical 0-allcylation of 2,6-dimethylphenol was examined. Decreases in temperature and volume, and increases in concentration and power, led to increases in the sonochemical effect. A study of the allcylation products from a reaction between 5-hydroxychromone-2-carboxylic acid ethyl ester with less reactive alkyl halides such as 1- and 2-bromobutane resulted in comparisons with phase transfer catalysis and conventional thermal methods. An investigation of the dehydrogenation of tetrahydronaphthalene under the influence of sonication was also attempted. Dehydrogenation was enhanced by sonication with sonochemical dehydrogenation occurring 20-40°C below the corresponding thermal reaction. Sonication as a processing aid was studied using examples taken from the food industry. The applications of particle size reduction, emulsification and crystallisation of various foodstuffs such as rice, sugar and cocoa grains were examined. The effect of sonication on the viscosity of gelled starch was also monitored with a view to achieving either a permanent or temporary reduction in viscosity.
|
66 |
Structure Elucidation and Synthesis of Natural ProductsMurphy, Annabel Christine January 2008 (has links)
In this thesis, synthetic chemistry was used as a tool in the exploration of various aspects of natural products discovered by the natural products research group at the University of Canterbury. Work on the constituent amino acids and connectivity of the pteratides, a potently cytotoxic series of cyclodepsipeptides, had been completed before the beginning of this work (carried out by Miss C. Chen). The elucidation of the stereochemistry of the constituent amino acids was undertaken in this present work. The synthesis of all stereochemical entities of a number of unusual amino acids, which were either not available commercially or were expensive, was carried out, providing reference materials for comparison to the natural products. The synthesis of the diastereoisomers of one of these amino acids, 4-methylproline, was carried out by modification of literature procedures, which led to the development of an improved, concise and stereoselective synthesis. The hydrolysis of the natural products, derivatisation of the resultant hydrolysates, synthetic and commercial reference amino acids and HPLC analysis allowed the full stereochemical assignment of the pteratide series. The total synthesis of spiro-mamakone A, a cytotoxic polyketide isolated by Dr S. van der Sar, was undertaken. The synthesis was not successfully completed due to difficulties in the late-stage formation of a crucial enedione motif. However, very advanced intermediates were successfully synthesised. These synthetic analogues of the natural product were analysed for biological activity, allowing valuable insight into the structure-activity relationship, for example, demonstrating the importance of the enedione moiety to biological activity.
|
67 |
Visible-Light Mediate Redox Processes: Strategies and Applications in Organic SynthesisPitre, Spencer Paul January 2017 (has links)
Over the past decade, the field of photoredox catalysis has garnered increasing amounts of attention in the organic chemistry community due to its wide applicability in sustainable free radical-mediated processes. Several examples have demonstrated that under carefully optimized conditions, efficient and highly selective processes can be developed through excitation of a photosensitizer using inexpensive, readily available light sources. Furthermore, these reactions can generally be performed under milder conditions than thermal reactions, as all the energy required to overcome the reaction barrier is supplied by light.
Despite all these recent advancements in the field, many of these discoveries often lack in depth investigations into the excited state kinetics and underlying mechanisms. Furthermore, the vast majority of these transformations are photocatalyzed by ruthenium and iridium polypyridyl complexes. Not only are these precious metal catalysts extremely costly, but these metals are also known to be toxic, limiting their potential use in the development of pharmaceutical protocols. Herein, we present our solutions to these shortcomings, which involve a three-prong approach in the development of novel protocols, understanding the underlying mechanisms through detailed kinetic analysis, and by the development of new tools to facilitate mechanistic investigation for practitioners who may not possess specialized photochemical equipment.
In this work, we were the first to demonstrate that radicals derived from amines, commonly employed as “sacrificial” electron-donors, can also act as reducing agents in photoredox transformations. We also present examples in which Methylene Blue, an inexpensive, non-toxic organic dye, can be employed as a viable alternative to ruthenium complexes for photoredox transformations. By employing a photosensitizer with more favourable excited state kinetics for electron-transfer, we successfully demonstrated that Methylene Blue could be used to increase the efficiency of a previously developed photoredox transformation.
While employing organic dyes is an excellent strategy to lowering the cost of photoredox transformations, another viable strategy is to employ heterogeneous semiconductors. Titanium dioxide is an example of a semiconductor which is often employed in photocatalytic applications due to its low cost, desirable redox properties, and high chemical stability which allows for continued use. However, titanium dioxide has seen limited use in organic synthesis due to the requirement of UV irradiation for excitation. Herein, we present a process which led to the discovery of visible light photochemistry with titanium dioxide, generated through the adsorption of indole substrates creating a new, visible light absorbing complex. Employing this strategy, we were able to promote the photocatalytic Diels–Alder reaction of indoles with electron-rich dienes, giving access to valuable tetrahydrocarbazole scaffolds.
Finally, in order to facilitate the characterization of chain processes in photoredox catalysis, we have successfully developed a visible light actinometer based on the ubiquitous photocatalyst, Ru(bpy)3Cl2. This actinometer offers many advantages compared to other visible light actinometers, such as completely eliminating the need for spectral matching, as the actinometer is also the photocatalyst. This technique should provide researchers with a mechanistic tool to properly characterize chain propagation in the transformation of interest.
|
68 |
Development of the Domino Pericyclic Oxy-Cope/Ene /Claisen /Diels-Alder Reaction and the Synthesis of Complex Bicyclo[3.3.1]alkenonesSow, Boubacar January 2014 (has links)
This thesis is a dissertation to support the development of new domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction, diversity oriented synthesis of PPAPs scaffold via sequential one pot cascade reaction and ethyl aluminum sesquichloride catalyzed highly hindered Diels-Alder reaction.
The first part concentrates on the domino pericyclic oxy-Cope/ene/Claisen/Diels-Alder reaction. As a result of this study, we have developed a general methodology for rapidly constructing complex diterpenes and discovered a thermal oxy-Cope/ene/Claisen/Claisen rearrangement, applied to the synthesis of trans decalin benzofurans.
The second part involved the development of an efficient synthetic approach towards bicyclo[3.3.1]nonenone core found in many natural products, via a sequential Diels-Alder/gold(I)-catalyzed 6-endo-dig cyclization and its application to the synthesis of a diversified library of PPAPs.
Finally, we have developed an efficient synthetic methodology for the formation of cyclohexene rings bearing quaternary carbon centers via an ethyl aluminum sesquichloride mediated highly hindered Diels-Alder reaction. This method solved an important problem encountered in the synthesis of many natural products including PPAPs. This methodology opened new opportunities in the total synthesis of PPAPs.
|
69 |
Organomanganese complexes in organic synthesisBruhn, Paul Robert January 1990 (has links)
No description available.
|
70 |
Synthetic Explorations in the Pursuit of a Rapid, Photoactivatable, Nitroxyl DonorCampbell, Mark Wesley 16 May 2017 (has links)
No description available.
|
Page generated in 0.0517 seconds