• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 500
  • 203
  • 122
  • 56
  • 20
  • 14
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1103
  • 124
  • 95
  • 87
  • 83
  • 80
  • 77
  • 73
  • 67
  • 64
  • 62
  • 58
  • 56
  • 54
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Contribution de la Lattice Boltzmann Method à l’étude de l’enveloppe du bâtiment / Lattice Boltzmann Method applied to Building Physics

Walther, Édouard 29 January 2016 (has links)
Les enjeux de réduction des consommations d’énergie, d’estimation de la durabilité ainsi que l’évolution des pratiques constructives et réglementaires génèrent une augmentation significative du niveau de détail exigé dans la simulation des phénomènes physiques du Génie Civil pour une prédiction fiable du comportement des ouvrages. Le bâtiment est le siège de phénomènes couplés multi-échelles, entre le microscopique (voire le nanoscopique) et le macroscopique, impliquant des études de couplages complexes entre matériaux, à l’instar des phénomènes de sorption-désorption qui influent sur la résistance mécanique, les transferts de masse, la conductivité, le stockage d’énergie ou la durabilité d’un ouvrage. Les méthodes numériques appliquées permettent de résoudre certains de ces problèmes en ayant recours aux techniques de calcul multi-grilles, de couplage multi-échelles ou de parallélisation massive afin de réduire substantiellement les temps de calcul. Dans le présent travail, qui traite de plusieurs simulations ayant trait à la physique du bâtiment, nous nous intéressons à la pertinence d’utilisation de la méthode "Lattice Boltzmann". Il s’agit d’une méthode numérique construite sur une grille – d’où l’appellation de lattice – dite "mésoscopique" qui, à partir d’un raisonnement de thermodynamique statistique sur le comportement d’un groupes de particules microscopiques de fluide, permet d’obtenir une extrapolation consistante vers son comportement macroscopique. Après une étude les avantages comparés de la méthode et sur le comportement oscillatoire qu'elle exhibe dans certaines configurations, on présente :- une application au calcul des propriétés diffusives homogénéisée des matériaux cimentaires en cours d'hydratation, par résolution sur le cluster du LMT.- une application à l'énergétique du bâtiment avec la comportement d'une paroi solaire dynamique, dont le calcul a été porté sur carte graphique afin d'en évaluer le potentiel. / Reducing building energy consumption and estimating the durability of structures are ongoing challenges in the current regulatory framework and construction practice. They suppose a significant increase of the level of detail for simulating the physical phenomena of Civil Engineering to achieve a reliable prediction of structures.Building is the centre of multi-scale, coupled phenomena ranging from the micro (or even nano) to the macro-scale, thus implying complex couplings between materials such as sorption-desorption process which influences the intrinsic properties of matter such as mechanical resistance, mass transfer, thermal conductivity, energy storage or durability.Applied numerical methods allow for the resolution of some of these problems by using multi-grid computing, multi-scale coupling or massive parallelisation in order to substantially reduce the computing time.The present work is intended to evaluate the suitability of the “lattice Boltzmann method” applied to several applications in building physics. This numerical method, said to be “mesoscopic”, starts from the thermodynamic statistical behaviour of a group of fluid particles, mimicking the macroscopic behaviour thanks to a consistent extrapolation across the scales.After having studied the comparative advantages of the method and the oscillatory behaviour it displays under some circumstances, we present - An application to the diffusive properties of cementitious materials during hydration via numerical homogenization and cluster-computing numerical campaign - An application to building energy with the modeling of a solar active wall in forced convection simulated on a graphical processing unit.
222

The Electrophysiological Correlates of Multisensory Self-Motion Perception

Townsend, Peter January 2022 (has links)
The perception of self-motion draws on inputs from the visual, vestibular and proprioceptive systems. Decades of behavioural research has shed light on constructs such as multisensory weighting, heading perception, and sensory thresholds, that are involved in self-motion perception. Despite the abundance of knowledge generated by behavioural studies, there is a clear lack of research exploring the neural processes associated with full-body, multisensory self-motion perception in humans. Much of what is known about the neural correlates of self-motion perception comes from either the animal literature, or from human neuroimaging studies only administering visual self-motion stimuli. The goal of this thesis was to bridge the gap between understanding the behavioural correlates of full-body self-motion perception, and the underlying neural processes of the human brain. We used a high-fidelity motion simulator to manipulate the interaction of the visual and vestibular systems to gain insights into cognitive processes related to self-motion perception. The present line of research demonstrated that theta, alpha and beta oscillations are the underlying electrophysiological oscillations associated with self-motion perception. Specifically, the three empirical chapters combine to contribute two main findings to our understanding of self-motion perception. First, the beta band is an index of visual-vestibular weighting. We demonstrated that beta event-related synchronization power is associated with visual weighting bias, and beta event-related desynchronization power is associated with vestibular weighting bias. Second, the theta band is associated with direction processing, regardless of whether direction information is provided through the visual or vestibular system. This research is the first of its kind and has opened the door for future research to further develop our understanding of biomarkers related to self-motion perception. / Dissertation / Doctor of Philosophy (PhD) / As we move through the environment, either by walking, or operating a vehicle, our senses collect many different kinds of information that allow us to perceive factors such as, how fast we are moving, which direction we are headed in, or how other objects are moving around us. Many of our senses take in very different information, for example, the vestibular system processes information about our head movements, while our visual system processes information about incoming light waves. Despite how different all of this self-motion information can be, we still manage to have one smooth perception of our bodies moving through the environment. This smooth perception of self-motion is due to our senses sharing information with one another, which is called multisensory integration. Two of the most important senses for collecting information about self-motion are the visual and vestibular systems. To this point, very little is known about the biological processes in the brain while the visual and vestibular systems integrate information about self-motion. Understanding this process is limited because until recently, we have not had the technology or the methodology to adequately record the brain while physically moving people in a virtual environment. Our team developed a ground-breaking set of methodologies to solve this issue, and discovered key insights into brainwave patterns that take place in order for us to perceive ourselves in motion. There were two critical insights from our line of research. First, we identified a specific brainwave frequency (beta oscillations) that indexes integration between the visual and vestibular systems. Second, we demonstrated another brainwave frequency (theta oscillation) that is associated with perceiving which direction we are headed in, regardless of which sense this direction information is coming from. Our research lays the foundation for our understanding of biological processes of self-motion perception and can be applied to diagnosing vestibular disorders or improving pilot simulator training.
223

Étude par un modèle de la génération périodique des signaux chimiotactiques chez dictyostelium discoideum

Martiel, Jean-Louis 03 May 1988 (has links) (PDF)
.
224

The role of cell-type selective synaptic connections in rhythmic neuronal network activity in the hippocampus

Katona, Linda January 2014 (has links)
No description available.
225

A Theoretical and Computational Study of Limit Cycle Oscillations in High Performance Aircraft

Padmanabhan, Madhusudan A. January 2015 (has links)
<p>High performance fighter aircraft such as the F-16 experience aeroelastic Limit Cycle Oscillations (LCO) when they carry certain combinations of under-wing stores. This `store-induced LCO' causes serious problems including airframe fatigue, pilot discomfort and loss of operational effectiveness. The usual response has been to restrict the stores carriage envelope based on flight test experience, and accept the accompanying reduction in mission performance.</p><p>Although several nonlinear mechanisms - structural as well as aerodynamic, have been proposed to explain the LCO phenomenon, their roles are not well understood. Consequently, existing models are unable to predict accurately AND reliably the most critical LCO properties, namely onset speed and response level. On the other hand, the more accurate Computational Fluid Dynamics (CFD) based time marching methodology yields results at much greater expense and time. Clearly, there is a critical need to establish methods that are more rapid while providing accurate predictions more in line with flight test results than at present. Such a capability will also aid in future aircraft design and usage.</p><p>This work was undertaken to develop a better understanding of nonlinear aeroelastic phenomena, and their relation to classical flutter and divergence, with a particular focus on store-induced LCO in high performance fighter aircraft. The following systems were studied: (1) a `simple' wing with a flexible and nonlinear root attachment, (2) a `generic' wing with a flexible and nonlinear wing-store attachment and (3) the F-16 aircraft, again with nonlinear wing-store attachments.</p><p>While structural nonlinearity was present in all cases, steady flow aerodynamic nonlinearity was also included in the F-16 case by the use of a Computational Fluid Dynamics model based on the Reynolds Averaged Navier Stokes (RANS) equations. However, dynamic linearization of the CFD model was done for the present computations. The computationally efficient Harmonic Balance (HB) nonlinear solution technique was a key component of this work, with time marching simulations and closed form solutions being used selectively to confirm the findings of the HB solutions. The simple wing and the generic wing were both modeled as linear beam-rods whose displacements were represented using the primitive modes method. The wing aerodynamic model was linear (quasi-steady for the simple wing and based on the Vortex Lattice Method for the generic wing), and the store aerodynamics were omitted.</p><p>The presence of a cubic restoring force (of hardening or softening type, in stiffness or in damping) at the root of the simple wing led to several interesting results and insights. Next, various nonlinear mechanisms including cubic restoring force, freeplay and friction were introduced at the wing-store attachment of the generic wing and these led to a still greater variety in behavior. General relationships were established between the type of nonlinearity and the nature of the resulting response, and they proved very useful for tailoring the F-16 study and interpreting its results.</p><p>The Air Force Seek Eagle Office/Air Force Research Laboratory provided a modal structural model of an LCO-prone store configuration of the F-16 aircraft with stores included. In order to investigate a range of stores attachment configurations, the analysis required modification of the stiffness and damping of the wing-store attachment. Since the Finite Element model of the wing and store structure was not available, the modification was achieved by subtracting the store and adding it back with the necessary changes to the store or attachment using a dynamic decoupling/coupling technique. The modified models were subjected to flutter/LCO analysis using the Duke Harmonic Balance CFD RANS solver, and the resulting flutter boundaries were used in combination with the HB method to derive LCO responses due to the wing-store attachment nonlinearity.</p><p>Comparisons were made between the simulation results and the F-16 flight test LCO data. While multiple sources of nonlinearity are probably responsible for the wide range of observed LCO behavior, it was concluded that cubic softening stiffness and positive cubic damping were the more likely structural mechanisms causing LCO, in addition to nonlinear aerodynamics.</p> / Dissertation
226

Superlattice electrodynamics as a source of Terahertz radiation

Dakers, Paul A. January 2012 (has links)
Charge-carriers propagating in superlattices exhibit the related phenomena known as negative differential conductivity and Bloch oscillation. This behaviour may be utilised for the generation of tunable electromagnetic radiation. In this work, the dependence of the drift velocity and displacement of charge-carriers on external, applied electric fields is investigated. The theory is extended to incorporate a different miniband structure, with the aim of modelling a superlattice made from graphene. I predict that, for a chosen set of electric field parameters, a semiconductor superlattice will emit radiation in the terahertz range. I create an original mathematical framework within which to calculate the charge-carrier behaviour in a triangular miniband structure, while incorporating an arbitrary variable to account for the effects of corrugation or disorder, and predict the appearance of conductivity multistability. This may be of interest to further work done on the use of graphene for superlattice device construction.
227

Ecoulements en gouttes activées par électromouillage

Malk, Rachid 26 January 2011 (has links) (PDF)
Parmi les différents mécanismes physiques permettant d'actionner des échantillons liquides au sein de labopuces, l'électromouillage sur diélectrique (EWOD) s'impose peu à peu comme une solution fiable permettant de manipuler en particulier des gouttes (labopuces digitaux). Bien que des modèles énergétiques permettent d'expliquer la plupart des fonctions fluidiques élémentaires obtenues par effet EWOD, il demeure certains phénomènes hydrodynamiques en goutte dont la compréhension à l'échelle locale présente des enjeux en termes scientifiques et applicatifs. En particulier, la maîtrise des oscillations de goutte et des écoulements électrohydrodynamiques induits par des signaux électriques alternatifs (AC-EWOD) pourrait permettre l'insertion de nouvelles fonctions dans les labopuces digitaux (brassage, séparation d'espèces). Dans la thèse proposée, une configuration optimale a été retenue consistant en une goutte reposant sur deux électrodes coplanaires passivées. Un banc de caractérisation a été développé ainsi que des logiciels spécifiques dédiés à l'analyse du mouillage et des oscillations de la goutte. Une première étude permet de caractériser l'électromouillage d'une goutte en configuration d'électrodes coplanaires. En particulier, la modélisation des contraintes électriques surfaciques permet de conclure sur leurs rôles dans l'injection normale et tangentielle de quantité de mouvement. Les oscillations de la goutte et les écoulements induits sont ensuite étudiés de manière expérimentale. Suivant la géométrie des électrodes, des configurations d'écoulements axisymétriques et quadripolaires sont observées. Un modèle basé sur le concept de courant de dérive est développé ; sa résolution numérique par éléments finis permet de retrouver les configurations d'écoulement. Des applications biologiques de l'actuation EWOD en signal alternatif sont finalement proposées et discutées pour le développement de laboratoires sur puces.
228

The semiclassical theory of the de Haas-van Alphen oscillations in type-II superconductors

Duncan, Kevin P. January 1999 (has links)
No description available.
229

Robust Measurement of the Cosmic Distance Scale Using Baryon Acoustic Oscillations

Xu, Xiaoying January 2012 (has links)
We present techniques for obtaining precision distance measurements using the baryon acoustic oscillations (BAO) through controlling systematics and reducing statistical uncertainties. Using the resulting distance-redshift relation, we can infer cosmological parameters such as w, the equation of state of dark energy. We introduce a new statistic, ɷ(l)(r(s)), for BAO analysis that affords better control over systematics. It is computed by band-filtering the power spectrum P(k) or the correlation function ξ(r) to extract the BAO signal. This is conducive to several favourable outcomes. We compute ɷ(l)(r(s)) from 44 simulations and compare the results to P(k) and ξ(r). We find that the acoustic scales and theoretical errors we measure are consistent between all three statistics. We demonstrate the first application of reconstruction to a galaxy redshift survey. Reconstruction is designed to partially undo the effects of non-linear structure growth on the BAO, allowing more precise measurements of the acoustic scale. We also present a new method for deriving a smooth covariance matrix based on a Gaussian model. In addition, we develop and perform detailed robustness tests on the ξ(r) model we employ to extract the BAO scale from the data. Using these methods, we obtain spherically-averaged distances to z = 0.35 and z = 0.57 from SDSS DR7 and DR9 with 1.9% and 1.7% precision respectively. Combined with WMAP7 CMB observations, SNLS3 data and BAO measurements from 6dF, we measure w = -1.08 ± 0.08 assuming a wCDM cosmology. This represents a ~8% measurement of w and is consistent with a cosmological constant.The preceding does not capture the expansion history of the universe, H(z), encoded in the line-of-sight distance scale. To disentangle H(z), we exploit the anisotropic BAO signal that arises if we assume the wrong cosmology when calculating the clustering distribution. Since we expect the BAO signal to be isotropic, we can use the magnitude of the anisotropy to separately measure H(z) and D(A)(z). We apply our simple models to SDSS DR7 data and obtain a ~3.6% measurement of D(A)(z=0.35) and a ~8.4% measurement of H(z = 0.35).
230

Harmonic Oscillations in Optical Waveguide Arrays

Wu, Jianxiong 11 December 2013 (has links)
The analogy of optical system to other physical systems has been attracting much attention over the past decades. In coupled optical lattices, phenomena originated from electronic systems, such as Bloch oscillations, Dynamic localization and Zener tunneling, have been extensively investigated and led to novel research directions and applications. Following this idea, harmonic oscillations are spatially mimicked by the propagation of supermodes in quadratically-coupled waveguide arrays. By analyzing the field envelope with the propagation constants and the superposition of the supermodes, we achieve conjugate-imaging at the half-period plane and self-imaging at the full-period plane, which give rise to the linear switching. Combining the linear switching and the nonlinear light propagation triggered at high power level, we demonstrate the superior performances of nonlinear power switching compared with traditional nonlinear directional couplers. Through the linear and nonlinear observation on AlGaAs waveguide array, we present the first experimental proof of the harmonic oscillations in optical waveguide arrays.

Page generated in 0.0277 seconds