• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 500
  • 203
  • 122
  • 56
  • 20
  • 14
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1103
  • 124
  • 95
  • 87
  • 83
  • 80
  • 77
  • 73
  • 67
  • 64
  • 62
  • 58
  • 56
  • 54
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Rigid-Body Modelling of Forklift Masts and Mast Sway Simulations

Le Tran, Minh January 2016 (has links)
Reach truck masts are subjected to oscillations, which have significant impacts on the dynamics of the entire vehicle. Mast oscillations can cause undesirable outcomes in extreme situations and therefore it is desirable to be able to predict these outcomes before they occur. A forklift manufacturer in Mjölby initiated a thesis with the intention to obtain a model that can simulate mast sway for situations where oscillations occur. The objective of the thesis was to create a model of Triplex masts and find dependencies between model parameters and variables such as fork height and load. The thesis was conducted modelling the mast with a rigid multibody approach where torsion springs and dampers were used between mast parts to simulate mast elasticity. Clearance at the connections were considered and included in the model. The obtained model constitutes of 8 parameters that could be tuned to attain different oscillation characteristics. Parametric optimisation was carried out to find optimal sets of parameters for compliance with sway measurement tests with different load and fork height cases.  The thesis has resulted in a model that is able to simulate mast sway with different oscillation characteristics depending on model parameters. Performed parametric optimisation resulted in parameters that reveal useful information about how model parameters depend on load and fork height. The method used for obtaining optimal parameters can likewise be applied to other mast models in order to gain insight into model parameters as functions of load and fork height.
402

Development of a Simulation Model of a Self-Energizing Hydraulic Brake to Actively Compensate Brake Torque Oscillations

Petry, Matthias, Reinertz, Olivier, Murrenhoff, Hubertus 28 April 2016 (has links) (PDF)
Friction force oscillations caused by changing properties of the contact zone between brake disc and pad are well known from various applications. Resulting effects like brake judder are known phenomena in brake technologies and in the scope of various scientific work. A new measure to potentially reduce brake torque oscillations is the active compensation with the use of the control system of a self-energizing hydraulic brake (SEHB). New in comparison to traditional disc brakes is the fact that the brake torque is measured by the pressure in an additional supporting cylinder. Thus, the brake system is able to work in brake torque control mode. Within this paper a dynamic simulation model of the SEHB is shown and evaluated with measurement data achieved from a full scale test rig for railway applications. Based on the simulation model a pressure control strategy is developed to minimize brake torque oscillations of lower frequencies. The control parameters of the simulation are transferred to the experimental setup. Finally, simulation and experimental results are compared. Future work will deal with the development of control strategies to additionally minimize brake torque oscillations of the higher dynamics.
403

A SYSTEMATIC STUDY ON THE THERMODYNAMIC AND TRANSPORT PROPERTIES OF LAYERED RUTHENATES

Lin, Xiunu 01 January 2006 (has links)
In the 4d transition metal oxides, the extension of the 4d orbitals leads to comparable and thus competitive kinetic and coulomb energies. As a result, small perturbations can induce significant changes in their physical properties, giving rise to a class of exotic phenomena that are rarely found in other materials. The ruthenates materials with readily tunable parameters open an avenue to study the strong electronic correlation in the rarely explored territory: the 4d transition metal oxides. The bilayered system, Ca3Ru2O7, belongs to the Ruddlesden-Popper series in which the physical properties are intimately linked to the lattice degrees of freedom. Ca3Ru2O7, with its quasi-2D and severe structure distortion, is believed to be placed in a unique position at which the role of orbital degrees of freedom is highlighted. The system displays strikingly different behaviors when the field is applied along different crystalline axes. A ferromagnetic (FM) state with full spin polarization is achieved for B||a-axis, but colossal magnetoresistance is realized only for B||b-axis by avoiding the ferromagnetic state. In addition, for B rotating within the ac-plane, slow and strong SdH oscillations periodic in 1/B are observed for T.1.5 K in the presence of metamagnetism. For B|| [110], oscillations are also observed but periodic in B (rather than 1/B) and persist up to 15 K. These properties together with highly unusual spin-charge-lattice coupling near the Mott transition (48 K) are driven by the orbital degrees of freedom. Complex thermodynamic properties are also observed in the other ruthenates system such as Sr4Ru3O10 and Pr3RuO7. The Sr4Ru3O10 is a triple-layered system that shows a dedicate balance between fluctuations and order. Besides the anomaly at TC=102K, anomalous behavior at low temperatures are also observed in the thermal study, indicative of an unusual magnetic order in this material. The Pr3RuO7 shows one-dimensional structure with zig-zag chain of corner sharing RuO6 octahedra running in parallel with the rows of edge-shared PrO8 pseudo-cubes. Magnetic and thermal properties studies on its single crystals indicate that the exchange interaction is strongly anisotropic. A Schottky-type anomaly at low temperature suggests that the gorderedh chain Pr ions are still sensitive to a crystal field.
404

Modélisation de la Physique Atomique et du Transfert Radiatif pour le laser X-UV

Robillart, Bruno 29 October 2010 (has links) (PDF)
Les sources X-UV sont l'objet d'un développement important depuis une dizaine d'années. Dans cette gamme spectrale, nous sommes maintenant capables de produire des sources cohérentes, collimatées et de forte brillance. De telles sources ont des applications dans l'imagerie médicale, la photolithographie, ou encore le diagnostic de plasmas denses... Cette thèse a été consacrée à la modélisation du laser X-UV "OFI", source X-UV étudiée au LOA (ENSTA, Palaiseau). Ce type de laser X-UV est généré suite à l'ionisation d'un gaz (Kr, Xe) par un laser infrarouge de forte puissance. Le plasma créé par cette interaction constitue la source X-UV. Le travail produit au cours de la thèse a porté sur l'amplification d'un signal X-UV injecté dans ce plasma. L'objectif était d'obtenir une analyse plus détaillée du profil spatio-temporel du signal. Un nouveau code numérique 3D a alors été élaboré. Il utilise un modèle de transfert radiatif décrit par les équations de Maxwell-Bloch. Les résultats du code ont d'une part montré que le profil temporel du signal X-UV changeait considérablement au cours de l'amplification. Notamment il peut, à forte saturation, révéler des pics d'intensité de très courte durée (<100fs). La forte saturation ne pouvant être obtenue qu'avec un plasma de plusieurs centimètres de long, ceci nous amène à considérer avec intérêt les expériences utilisant le guidage du laser infrarouge, permettant la création de tels plasmas. D'autre part, l'analyse de la structure du profil transverse du signal X-UV en sortie calculé à partir de ce même code, nous a permis de mettre en évidence que le plasma amplifi cateur agissait comme un filtre spatial sur l'impulsion X-UV injectée.
405

Comment le sens est-il extrait de l'information visuelle ? Le système visuel exploré des catégories à la conscience

Koenig, Roger 19 September 2012 (has links) (PDF)
Comment le sens est-il extrait de l'information visuelle ? Cette thèse est focalisée sur la capacité du système visuel d'humains et de singes à extraire et représenter l'information visuelle sur différents niveaux de complexité. Nous avons étudié différent niveaux de représentations visuelles, de la production de représentations visuelles primaires jusqu'à l'élaboration de représentations visuelles conscientes. Ce manuscrit présente six travaux dans lesquels nous avons exploré : (1) les attributs visuels nécessaires pour réaliser la tâche de catégorisation ultra-rapide chez l'homme et le singe au moyen de méthodes psychophysiques, (2) la dynamique spatio-temporelle de l'attention visuelle chez l'homme au moyen de méthodes psychophysiques, (3) les corrélats neuronaux des représentations de haut niveau en EEG grâce au développement d'une nouvelle technique appelée SWIFT, (4) les corrélats neuronaux de la conscience visuelle dans la rivalité binoculaire en EEG, (5) la synchronie des signaux cérébraux en fonction de la reconnaissance consciente au moyen d'enregistrements intracrâniens chez des patients épileptiques et (6) les corrélats neuronaux associés à la prise de conscience chez le singe au moyen d'enregistrements intracrâniens. Les résultats de ces travaux nous ont permis d'ébaucher un modèle de la perception visuelle, cherchant à dissocier l'attention et la conscience.
406

Kinetic stabilisation of the internal kink mode for fusion plasmas

Graves, Jonathan Peter January 1999 (has links)
No description available.
407

Perisomatic-targeting interneurons control the initiation of hippocampal population bursts

Ellender, Tommas Jan January 2009 (has links)
Replay of spike sequences can be seen during sharp wave – ripple population burst activity in the hippocampus. It is thought that this activity, which occurs during rest and sleep, is involved in memory consolidation. The cellular mechanisms underlying the initiation of these replay events are not well understood. To investigate this, a hippocampal slice model, showing spontaneous sharp wave – ripple activity, and a combination of planar multi-electrode array recordings and whole-cell patch-clamp recordings of anatomically identified hippocampal neurons were used. Firstly, the spatial and temporal profile of sharp waves in vitro was analysed in detail. Sharp waves were generated by changing subpopulations of pyramidal neurons in the CA3 region and had characteristics similar to those found in vivo. Secondly, four major receptor types present in hippocampal CA3, namely NMDA, AMPA, GABAA and GABAB receptors, were investigated for their involvement in sharp wave generation. Surprisingly, not only AMPA receptor-mediated events, but also phasic GABAA receptor-mediated inhibition, were necessary for sharp wave generation. Thirdly, single perisomatic-targeting interneurons were activated. This experiment showed that induced spiking activity of an individual perisomatic-targeting interneuron can both suppress and subsequently enhance local sharp wave generation. Spiking activity of other neuron types (i.e. pyramidal neurons, dendritic-targeting interneurons and interneuron-selective interneurons) had no significant effect on sharp wave incidence. Finally, it is suggested that this post-inhibitory enhancement of sharp wave generation can be mediated by a transient increase in the ratio of excitation to inhibition in the local network. In conclusion, these results suggest a new role for perisomatic-targeting interneurons in controlling the local initiation of sharp waves by selectively suppressing and subsequently enhancing recruitment of a subpopulation of pyramidal neurons. These results further imply that interneurons may play an integral part in the local information processing that takes place in the hippocampal network.
408

Temporal orienting in the human brain : neural mechanisms of control and modulation

Rohenkohl, Gustavo January 2010 (has links)
The main aim of the experiments reported in this thesis was to explore the neural mechanisms underlying the temporal orienting of attention. In Chapter 3, I explored the possible dissociation between exogenous and endogenous temporal orienting by comparing reaction times to targets appearing after rhythmic or symbolic cues. Behavioural results provided evidence for the existence of dissociable exogenous and endogenous types of temporal orienting of attention. The experiment in Chapter 4 combined spatiotemporal expectations using rhythmic moving cues to test the modulatory effect of exogenous temporal orienting in the brain. Specifically, I used EEG to test the effect of temporal orienting on perceptual and motor stages of target analysis, as well as on anticipatory oscillatory brain activity. The time-frequency analysis revealed that rhythmic cues can entrain slow brains oscillations, providing a putative mechanism for enhancing the perceptual processing of expected events. Spatiotemporal expectations also modulated the amplitude of visual responses and the timing and amount of preparatory motor activity. In Chapter 5, I used a novel task to explore the neural modulatory effects of spatial and temporal expectations acting in isolation or in coordination. For the first time, the analysis of early visual responses demonstrated that temporal expectations alone, independently of spatial orienting, can enhance early visual perceptual processes. The time-frequency analysis in this experiment showed a desynchronisation of alpha oscillations focused over central-parietal electrodes induced by rhythmic cues that were independent of spatial expectations. When rhythmic cues carried spatiotemporal information, the alpha desynchronisation also spread over contralateral occipital electrodes. In Chapter 6, fMRI was used to test the possible neural dissociation between motor and temporal orienting. The results confirmed the large overlap between these two processes, but also indicated independent behavioural and neural effects of temporal orienting. Temporal orienting activated the left IPS across motor conditions, further implicating the left IPS in temporal orienting. Based on the results of these experiments, directions for future studies are discussed.
409

Asymptotic behavior and effective boundaries forage-structured population models in aperiodically changing environment

Andersson, Jonathan January 2017 (has links)
Human activity and other events can cause environmental changes to the habitat of organisms. The environmental changes effect the vital rates for a population. In order to predict the impact of these environmental changes on populations, we use two different models for population dynamics. One simpler linear model that ignores environmental competition between individuals and another model that does not. Our population models take into consideration the age distribution of the population and thus takes into consideration the impact of demographics. This thesis generalize two theorems, one for each model, developed by Sonja Radosavljevic regarding long term upper and lower bounds of a population with periodic birth rate ; see [6] and [5]. The generalisation consist in including the case where the periodic part of the birth rate can be expressed with a finite Fourier series and also infinite Fourier series under some constraints. The old theorems only considers the case when the periodic part of the birth rate can be expressed with one cosine term. From the theorems we discover a connection between the frequency of oscillation and the effect on population growth. From this derived connection we conclude that periodical changing environments can have both positive and negative effects on the population.
410

Enhancing motor performance in the healthy and Parkinsonian brain : adaptation, oscillations, and electrical stimulation

Joundi, Raed A. January 2012 (has links)
Parkinson's disease (PD) is characterized by debilitating impairments in motor control arising from pathophysiological alterations in basal ganglia circuitry and function. In this research thesis two main approaches, namely electrical recording and stimulation, are combined in order to better understand motor performance in Parkinson's disease and ways it might be improved. Three main types of motor behaviors are studied: discrete ballistic movement, repetitive movement, and motor adaptation. <ul><li>First, deep brain stimulation (DBS) of the subthalamic nucleus (STN) was shown to improve the velocity of discrete, ballistic movements in PD. The neural correlates of ballistic movements were then studied by recording from the STN of PD patients, revealing onset of beta-range desynchronization prior to, and gamma-range frequency synchronization during, performance of fast arm reaches. To determine a causal role for these oscillatory frequencies in motor behavior, the motor cortex of healthy humans was stimulated at either beta or gamma frequency during a 'go/no-go' grip force task. Beta stimulation resulted in slower force generation on 'go' trials but enhanced inhibition during 'no-go' trials, whereas gamma stimulation resulted in faster force generation on 'go' trials.</li> <li>Second, STN DBS resulted in improved repetitive tapping performance in PD patients through a reduction in variability. Recordings from the STN demonstrated that repetitive movement was accompanied by a substantial and persistent suppression of beta oscillatory activity.</li> <li>Third, Parkinson's patients were tested on a motor adaptation task, revealing intact learning but impaired retention of a visuomotor rotation. Application of direct current stimulation of the motor cortex resulted in enhanced adaptation during both learning and retention in PD patients and healthy controls.</li> <li>These results causally implicate the basal ganglia and oscillatory activity in motor control, provide insight into the neuronal mechanisms of motor performance and adaptation, and demonstrate promising new avenues for enhancing motor control in Parkinson's disease.</li></ul>

Page generated in 0.0254 seconds